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The simulation of diffusional association (SDA) Brownian

dynamics software package has been widely used in the

study of biomacromolecular association. Initially developed

to calculate bimolecular protein–protein association rate

constants, it has since been extended to study electron

transfer rates, to predict the structures of biomacromolecular

complexes, to investigate the adsorption of proteins to inor-

ganic surfaces, and to simulate the dynamics of large sys-

tems containing many biomacromolecular solutes, allowing

the study of concentration-dependent effects. These exten-

sions have led to a number of divergent versions of the soft-

ware. In this article, we report the development of the latest

version of the software (SDA 7). This release was developed

to consolidate the existing codes into a single framework,

while improving the parallelization of the code to better

exploit modern multicore shared memory computer architec-

tures. It is built using a modular object-oriented program-

ming scheme, to allow for easy maintenance and extension

of the software, and includes new features, such as adding

flexible solute representations. We discuss a number of

application examples, which describe some of the methods

available in the release, and provide benchmarking data to

demonstrate the parallel performance. VC 2015 The Authors.
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DOI: 10.1002/jcc.23971

Introduction

Protein–protein diffusional association processes can occur on

timescales extending to the order of seconds, beyond the

scope of current all-atom molecular dynamics (MD) simula-

tions. This problem, and the need to sample many molecular

encounters to provide reliable statistics on association kinetics,

mean that simplified models are required. One approach is to

model protein diffusion by Brownian dynamics (BD) simulation

of rigid solute bodies in a continuum model of the solvent.

Apart from eliminating the solvent’s degrees of freedom, the

use of rigid solutes reduces the computational cost of simula-

tions in two main ways. First, by neglecting high frequency

intramolecular vibrations, a much larger simulation time step

(on the order of picoseconds, compared to the femtosecond

time steps required in MD simulations) may be used, greatly

reducing the number of force evaluations required to propa-

gate the simulation trajectory. Second, intermolecular interac-

tions can be modeled as the interaction of fixed interaction

sites on one solute with a precomputed interaction potential

grid on another solute, reducing the formal scaling of the cal-

culation of intermolecular forces to O(N), with N the number

of solute atoms, compared to the OðN2Þ or OðN ln NÞ algo-

rithms in MD. This treatment of forces between solutes is used

in simulation of diffusional association (SDA) and is also

employed in other BD simulation software packages, namely,

UHBD,[1,2] Browndye,[3] BrownMove,[4] and Macrodox.[5]

SDA is a BD simulation software package that was first

reported in 1997 by Gabdoulline and Wade[6,7] for computing
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bimolecular rate constants for protein–protein association. The

software was later extended to allow the study of protein–pro-

tein docking,[8] electron transfer,[9] and docking to a metal sur-

face.[10] More recently, Mereghetti et al.[11] developed a variant

of SDA (SDAMM) which allows the simulation of multiple mac-

romolecules, to compute diffusional and associational proper-

ties, and investigate the effects of macromolecular crowding

which occur at high macromolecular concentrations.[12] Appli-

cations of SDA include studies of the effects of viral RNA bind-

ing on capsid protein association rates,[13] the association of a

soluble protein to a membrane bound protein,[14] protein

association to membrane phosphoinositide lipids,[15] protein

binding to cellulose fibres,[16] and the characterisation of drug-

receptor encounter complexes.[17] A BD method for simulating

many solutes,[18] based on SDA but developed independently,

was also used to simulate a model of the bacterial

cytoplasm.[19]

In this article, we report an updated and restructured ver-

sion of SDA, SDA 7. Our motivation for creating this new ver-

sion was driven by the following five factors: (i) our desire to

unify the SDA and SDAMM codes, their associated preparation

and analysis tools, and derived codes that model surface inter-

actions, into a single maintainable framework; (ii) to improve

the parallel performance of the software to better utilize mod-

ern parallel computer architectures; (iii) to introduce dynamic

memory management to allow larger systems to be studied

without the need for recompilation of the code; (iv) to allow

solute flexibility to be treated in the simulated models; and (v)

to improve the modularity and readability of the code to allow

for easier maintenance and extension, both by developers and

end-users. In the sections that follow, we describe the theory

of Brownian dynamics simulation of biomacromolecules and

report the new features that have been developed as part of

SDA 7, including a new algorithm which allows for solutes to

be described by more than one rigid structure, thus incorpo-

rating conformational flexibility, or changes in protonation

states, into the simulations. We then describe the new object-

oriented structure of the code, including a discussion of the

reusability this adds to the framework, and describe the paral-

lelization scheme employed. Finally, we give a set of simula-

tion benchmarks and use cases.

Brownian Dynamics Simulation of
Macromolecular Diffusion

Modeling the interactions of biomacromolecules in solution is

a highly complex problem with many degrees of freedom.

One method to reduce the dimensionality of the problem is

by using implicit solvent models in which the solvent is

treated as a dielectric continuum.[20] While continuum-based

models provide a description of the energetics of solvation,

the dynamic effects of solvent friction may be lost, leading to

an incorrect description of time-dependent properties. In a

Brownian dynamics simulation, these frictional forces are intro-

duced in a stochastic manner that represents the buffeting of

solutes by the thermal motion of solvent atoms. Ermak and

McCammon[21] introduced an algorithm to describe the propa-

gation of a system of N Brownian particles, in which the dis-

placement of particle i during a time step Dt is given by

Dri 5 Dt
XN

j51

@D̂ ij

@rj
1

D̂ ij

kBT
� Fi

 !
1 Ri (1)

where kB and T are the Boltzmann constant and simulation

temperature, respectively, D̂ ij is the 3 3 3 hydrodynamic diffu-

sion tensor[22–24] between particles i and j, Fi is the systematic

force acting on particle i, and Ri is a vector describing a ran-

dom displacement of i, sampled at each simulation step from

a Gaussian distribution of mean zero that satisfies the var-

iance–covariance relation hRiRji52D̂ ijDt for all i and j. The vec-

tor Ri is obtained by Cholesky decomposition of the N 3 N

total diffusional tensor D̂ of the system, whose elements are

the pairwise tensors, D̂ ij . This decomposition scales as O(N3),

and is the most computationally demanding step of such a

Brownian dynamics scheme.

In SDA 7, we model solutes using all-atom rigid conforma-

tions, which allows the use of precomputed interaction grids

to speed up the calculation of the systematic forces, Fi (See

Appendix A). This also removes the need to model intramolec-

ular hydrodynamic interactions, so in dilute solutions, hydrody-

namic interactions can be assumed to be negligible, meaning

the off-diagonal tensors in D̂ can be taken as zero, while diag-

onal tensors D̂ ij for i 5 j can be replaced by scalar quantities.

Equation (1) can therefore be simplified to

Dri5
Dt

kBT
DT

i � Fi1Ri (2)

where DT
i is the infinite dilution translational diffusion coeffi-

cient of solute i, and Ri is a random vector of mean zero and

variance hR2
i i56DT

i Dt. An analogous equation is used to

describe the rotation of the rigid solute i, in which the transla-

tional diffusion coefficient is replaced by the rotational coeffi-

cient DR
i and the forces are replaced by torques.[6]

Two simulation schemes are used in SDA 7, one that models

the bimolecular association of a pair of solutes,[6] and one

which models the dynamics of many solute molecules in solu-

tion.[11] In the first scheme, one of the solutes remains fixed at

a position in the centre of the simulated volume, but is

allowed to rotate, while the diffusion of the other is simulated.

To account for the diffusion of the fixed solute, a combined

translational diffusion coefficient is used for the mobile solute,

given by the sum of the coefficients of the two solutes. This

approach is used to calculate diffusional association rate

constants,[6,7,25] using the Northrup–Allison–McCammon

method,[26] electron transfer rates,[9] and for docking to obtain

the structures of encounter complexes.[8] In the second scheme,

the dynamics of many solutes are modeled, in a simulated vol-

ume that may be either periodic or nonperiodic, allowing the

effects of solute concentrations to be included. As the total

concentration of the solutes increases, the assumption that

hydrodynamic interactions can be taken as negligible becomes

less valid. To include some of the effects of hydrodynamic inter-

actions, while avoiding the computational expense of the full
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hydrodynamic diffusion tensor approach described in eq. (1),

Mereghetti et al.[12] introduced a mean-field approximation to

hydrodynamic interactions, which is included in SDA 7. Follow-

ing a method first described by Heyes,[27] the diffusion coeffi-

cient of solute i is scaled at each simulation time step

according to the fractional occupancy of the local volume sur-

rounding i by other solutes. In calculating the fractional occu-

pancy of local volumes, all solutes are assumed to be spherical,

with the radii of their volumes given by their Stokes hydrody-

namic radii.

New Features in SDA 7

Flexible solute representations

In previous versions of SDA, each solute has been represented

by a single rigid conformation. Although a rigid approximation

is suitable in many cases, it is known that docking poses can

be very sensitive to the initial structures of the interacting sol-

ute partners, as solutes may undergo conformational changes

during the binding process. Similarly, association rates may be

affected by conformational selection or adaptation which is

not accounted for in a rigid model.

In SDA 7, solutes can be represented by a set of rigid con-

formations. If available, these may be a set of structures deter-

mined by crystallography or NMR. Alternatively, they may be

generated by modeling or simulation. For example, a normal

mode analysis may be performed to predict the biologically

relevant low frequency motions of a protein, from which a set

of representative conformations may be generated. A set of

different conformations of a given solute may also be used to

represent different protonation states of titratable groups at

one or several pH values.

Potential of mean force calculations

SDA 7 is able to perform potential of mean force (PMF) calcu-

lations of the molecular adsorption of solutes to a planar sur-

face. The implementation of PMF is based on a

thermodynamic integration method described by Kokh

et al.[10] Given a rigid body structure of a molecule, this

method describes the free energy of adsorption as a six

dimensional function of energy (three of which define the

rotational degrees of freedom and the remaining three the

translational degrees of freedom). This configurational space is

sampled using a set of rotation angles and positions over an

integration interval with predefined subintervals of equal

width for each of the six degrees of freedom. As the calcula-

tion of a complete six dimensional free energy landscape is

usually not feasible, exploration of the configurational space

can be restricted to a small area over the surface, if it retains a

periodic unit of structure. The reaction coordinate in the PMF

calculations is defined as a line perpendicular to the surface.

Updated preparation and analysis tools

The set of tools available in SDA 7 has also been extended

and unified for both bimolecular and many-molecule simula-

tions. These include preparation tools for creating the 3-

dimensional interaction potential grids, for calculating effective

charges[28] used to represent the solutes, and for generating

initial configurations with many solutes at a given concentra-

tion. The analysis tools include tools for postanalysis of trajec-

tories, for example to calculate translational and rotational

self-diffusion coefficients, and conversion tools to convert SDA

7 trajectory files and structure files to PDB or DCD formats, or

between UHBD and DX grid file formats.

Details of the SDA 7 Implementation

SDA 7 has been rewritten in Fortran 90 (F90) to allow the use

of language features that were not available in the previous

Fortran 77 (F77) versions of SDA. Dynamic memory allocation

allows for more efficient memory use, and for larger systems

to be simulated, limited only by the available system memory.

F90 modules provide a modular framework to the code, allow-

ing library functions to be reused in various parts of the main

simulation code and that of the related preparation and analy-

sis tools. The use of modules and pointers also allows related

data structures to be grouped together producing an object-

oriented structure. Unlike in previous versions of SDA, bimolec-

ular simulations may now be run in parallel, through the use

of OpenMP.

Solute representation

Figure 1 shows the relationships between the module classes

used to represent a set of solutes. During SDA 7 simulations,

the precomputed interaction grids constitute the largest mem-

ory requirement of the calculation. In the case of a simulated

system containing many identical solute molecules, it is desira-

ble to store only one copy of their identical grids. Further-

more, when a solute is represented by more than one rigid

conformation, the grids corresponding to the different confor-

mations of the same solute should be grouped together in a

single class.

One conformation of a solute is described by the setofgrid

class. It comprises the 3D precomputed interaction potential

grids (yellow in the figure) as well as the positions and values

of their interaction sites, such as effective charges or atomic

surface accessibilities, within the 3D solute structure. Addi-

tional information is also stored here, such as reaction criteria

to define encounter complexes, the solute infinite dilution dif-

fusion coefficients used for BD propagation or the Stokes

hydrodynamic radii used in the mean-field hydrodynamic

approximation. Each solute object only needs to store the

instantaneous position and orientation of the solute and a

pointer to its associated setofgrid instance. When a solute is

defined by more than one conformation, an intermediate flexi-

ble object (shown in orange) is associated to each flexible sol-

ute. It consists of a linked list of setofgrid instances, each

corresponding to a specific conformation. Upon a change of

conformation, the pointer to the current conformation is

updated to the correct setofgrid instance. Finally, pointers to

all solute instances are stored in an array (shown in red). This
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design provides a simple and memory efficient way to simu-

late many different solute types, each of which may be repre-

sented by a set of conformations.

Algorithm for treating solute flexibility

When simulating solutes defined by multiple coordinate sets,

these coordinates are stored in a linked list. After the update

of the solutes’ positions and orientations during the BD propa-

gation step, trial moves to alternative coordinate sets may be

attempted. The time interval between trial moves can be set

to either be fixed period, or can be drawn from a normal dis-

tribution, with the mean and standard deviation of this distri-

bution set by the user in the input file.

A parameter defined in the input file, nearest, can limit a

trial move to an adjacent conformation in the list, or specify

that trial moves may be attempted to a randomly chosen con-

formation. The use of adjacent conformations may be prefera-

ble when the conformations are generated by normal mode

analysis, but may introduce a bias in the sampling of the first

and last conformation in the list. When the conformations are

obtained from NMR or crystal structures, a random change of

conformation may be preferable.

SDA 7 includes three acceptance criteria for deciding

whether a trial move should be accepted: (i) to always accept

the move, (ii) to accept all moves that lower the interaction

energy of the solute, and (iii) a Metropolis algorithm[29] in

which conformational changes that lower the interaction

energy of that solute are always accepted, while those that

increase the interaction energy are accepted with a probability

expðDG02DG1

kB T Þ, where DG0 is the interaction energy of the solute

with its surroundings in the old conformation and DG1 is the

interaction energy of the new conformation.

SDA 7 workflow and parallelization

The workflow of an SDA 7 simulation is shown in Figure 2.

The initialisation stage is common to all simulation types, with

simulation parameters defined in a single control input file.

This file also defines the location of any additional files

required for the calculation, such as structure files and files

describing the precomputed solute interactions.

The main calculation loop is processed differently for bimo-

lecular and many-molecule simulations, mainly because a dif-

ferent OpenMP parallelization scheme is required for these

different simulation types. During bimolecular simulations, SDA

can compute association or electron transfer rate constants

and predict the structures of the most energetically favorable

docked encounter complexes. During many-molecule simula-

tions, the radial distribution functions can be computed on

the fly, while other properties, like translational and rotational

self-diffusion coefficients or transient oligomerizations, are

computed with separate tools in a postprocessing stage.

SDA 7 has been developed to exploit multicore shared-

memory architectures with the use of OpenMP. During bimo-

lecular simulations, thousands of trajectories are typically

generated to accumulate the required statistical data. In this

case, a simple parallelization scheme is possible, with each

thread computing a single trajectory at a time. Each thread

needs to have its own private copy of the solutes, with inde-

pendent positions and orientations, but they can share the

same grid data, reducing the overall memory cost compared

to either running the trajectories as independent jobs, or using

a Memory Passing Interface parallelization scheme. There are

some scaling bottlenecks due to accessing shared arrays dur-

ing the simulations. For example, during docking simulations,

each thread owns a private list of high scoring complexes that

have been computed. At regular intervals, these lists are

merged into a shared one. An additional factor that affects

scaling is what we call the “end-effect.” At the end of a bimo-

lecular simulation, only one thread is executing a trajectory,

the others have no remaining trajectories to run, and remain

idle. In practice, the end-effect is usually small, as shown in

the benchmarks described in the results section.

In many-molecule simulations, single trajectories are gener-

ated. The calculation of the forces on each solute represents

the most computationally expensive step (typically more than

95% of the CPU time). The algorithm, which formally scales as

Figure 1. Simplified class diagram of the solute-grid relationship (and the

memory storage of simulation data). An array contains pointers to each

instance of the solute class for each solute. A single setofgrid instance is

used for all identical conformations of the solutes to minimize memory

requirements. In the case of flexible solutes, an intermediate flexible object

containing a linked-list of pointers to the setofgrid instances of each confor-

mation is added to each flexible solute.
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Figure 2. Workflow of an SDA 7 simulation. The simulation parameters are set in a single control input file, which also defines the location of the addi-

tional files needed for the simulation. The simulation proceeds through one of two routes, depending on whether it is a bimolecular or many-molecule

simulation. With bimolecular simulations looping over many trajectories with different initial configurations, and many-molecule simulations consisting of a

single trajectory of nsteps BD moves. In both simulation types, there are three main calculations that may be computed within a simulation time step: a

force calculation (F), a BD propagation move (BD), and an energy evaluation (E). The simulation types are parallelized differently (shown here as an exam-

ple with four OpenMP threads), with each thread in a bimolecular simulation running an independent trajectory and the force, BD and Energy calculations

parallelized across threads in many-molecule simulations. In many-molecule simulations, all threads must synchronize between these three calculations.

Both types of simulation produce output files that are consistent with each other. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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OðN2Þ (or O(N) with the use of cutoffs) with N being the num-

ber of solutes, is a double loop over pairs of solutes. OpenMP

is used for distributing the first loop across the number of

available cores. The calculation of energies and the trajectory

propagation is parallelized similarly.

Simulations can be performed within a spherical volume or

a rectangular box, with or without periodic boundary condi-

tions. An atomically detailed planar surface, lying in the xy-

plane may be defined in simulations.

Application examples and benchmarks

In this section, we discuss simulations of three systems that high-

light different functionalities available in SDA 7 (Fig. 3). First, we

consider the association of the two proteins, barnase and barstar

(Fig. 3a). Barnase is an extracellular ribonuclease and barstar is its

intracellular inhibitor. They are known to have a very strong bind-

ing affinity, with a fast bimolecular association rate constant of

1072109 M21s21,[30,31] depending on experimental conditions.

Barnase and barstar already served as a model protein pair in

the development of SDA[6–8,25] because the wild-type proteins

and a number of mutants have been extensively characterized

biochemically and structurally. We use the barnase–barstar sys-

tem to investigate the parallel scaling of SDA 7, during both

docking and association rate calculations. We also compare the

single thread speed with that obtained using SDA 6.

The second system is a set of Hen Egg White Lysozyme

(HEWL) protein molecules whose diffusion is simulated using

the many-molecule simulation functionality of SDA 7 (Fig. 3b).

Mereghetti et al.[11] previously reported the use of SDAMM to

study the dynamics of HEWL in solution at different protein

concentrations. They compared osmotic second virial coeffi-

cient B22 values at three different pH values (3, 6, and 9) and

at different ionic strengths, and the self-diffusional coefficients

at pH 4.6 and at varying protein concentrations. This system

was also used to validate the implementation of the Debye-

H€uckel electrostatic correction used in both SDAMM and

SDA 7.[32] We use this example system to assess the scaling of

many-molecule simulations in SDA 7, and examine the effect

that including a flexible solute representation, by allowing the

HEWL molecules to switch between their protonation states at

pH 3, 6, and 9, have on the scaling of the method. While mod-

eling transitions between pH-dependent charge states is

somewhat artificial, we use the results of these simulations to

discuss the potential future applications of this novel method.

Finally, we consider the docking of the globular domain of

the linker histone H5 to a flexible nucleosome (Fig. 3c), which

was previously studied by Pachov et al.[33] This application

case shows the use of SDA 7 for a large system, with one sol-

ute treated flexibly. Pachov et al.[33] generated a series of con-

formations from a normal mode analysis using an elastic

network model of the nucleosome, and independent BD simu-

lations were performed for each conformation. With the flexi-

bility module of SDA 7, these simulations can be performed in

a more efficient way. Treating solute flexibility in a single simu-

lation allows for only those complexes with the most favorable

binding energies to be recorded, whichever conformation of

the flexible solute they include. Furthermore, with a suitable

conformational sampling algorithm, sampling can be biased

towards those conformations that produce encounter com-

plexes with more favourable binding free energies, reducing

the total simulation time required.

Methods

SDA 7 was compiled using gfortran 4.8.1. The barnase–barstar

and HEWL benchmark simulations were run on a compute

Figure 3. Test systems used for the validation and benchmarking of SDA 7.

a) The electrostatically guided bimolecular association of barnase (cyan)

and barstar (green). The 1 0.5 kcal/(mol�e) (blue) and –0.5 kcal/(mol�e) (red)

isosurfaces of the electrostatic potentials surrounding each solute are

shown. b) A snapshot of the simulation of 256 HEWL molecules in solution

(The HEWL molecules are colored differently for clarity). c) Docking of the

globular domain of the linker histone H5 (blue) to the nucleosome. The

crystal conformation (magenta, 70) and a structure generated with an elas-

tic network model (cyan, 76) of the flexible region of the nucleosome are

shown.
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cluster consisting of nodes containing four AMD Opteron 6174

12-core 2.2 GHz processors. For comparison, SDA 6 was com-

piled with both gfortran 4.8.1 and ifort 11.1, and simulations

were performed on the same compute cluster. The docking

simulation of the linker histone H5 to the nucleosome was

performed on a cluster node containing two Intel Xeon E5-

2630 6-core 2.3 GHz processors.

Case I: Bimolecular simulation of barnase–barstar association.

The coordinates of barnase and barstar were taken from a

crystal structure of their complex (PDB code: 1BRS, 2.0 Å reso-

lution). Protonation states for each protein were assigned at

pH 7 using PDB2PQR[34,35] resulting in net charges of 1 2 e for

barstar and –6 e for barnase. Atomic partial charges and radii

were taken from the Amber force field.[36] Electrostatic poten-

tial grids of size 1293 Å3 and spacing 1 Å were generated with

APBS[37] by solution of the linearized Poisson–Boltzmann equa-

tion with an ionic strength of 50 mM, ion radius of 1.5 Å, a

protein interior dielectric constant of 4.0, a solvent dielectric

constant of 78.0 and a temperature of 298.15 K. Effective

charges[28] on each protein were calculated using the ECM

module, and electrostatic and hydrophobic desolvation grids

of size 1103 Å3 and spacing 1 Å were created with the make_

edhdlj_grid module of SDA 7.

Bimolecular association rate and docking simulations were

performed using SDA 7 with processor core counts ranging

from 1 to 48. For each simulation type and core count, the

simulations were repeated 10 times using different random

number generator seeds. In each simulation, 20,000 independ-

ent trajectories were created. Ten simulations of 20000 trajec-

tories were also performed with SDA 6 (compiled with both

gfortran and ifort), and compared to the single processor sim-

ulations using SDA 7. In all simulations, the initial position and

orientation of barstar was randomly chosen to lie on a sphere

of radius 150 Å, centred on the geometric midpoint of bar-

nase, and all simulations were terminated when the interpro-

tein centre-to-centre separation reached 300 Å.

During the simulations for the calculation of the bimolecular

association rate constant, long-range electrostatic and short-

range electrostatic desolvation interactions (see Appendix A)

were acting between the proteins. The association rate con-

stant kon was calculated using the Northrup-Allison-

McCammon method,[26] with an encounter complex defined

when two independent native contacts were sampled at a dis-

tance of 6 Å, as used previously by Gabdoulline and Wade.[25]

Pairs of native contacts were considered as being independent

if the interacting residues of the same protein were separated

by more than 5 Å.

To better describe the binding energetics of close protein

contacts, in addition to the long-range electrostatic and short-

range electrostatic desolvation interactions used in the rate

calculations, short-range hydrophobic desolvation interactions

were also modeled during the docking simulations, during

both the BD search and in scoring the docked complexes. Five

thousand low energy docked encounter complex structures

were recorded during the simulation, and subsequently clus-

tered using an average-linkage hierarchical clustering method

developed by Motiejunas et al.[8] Encounter complex solutions

that lay within 1 Å RMSD of a previously recorded lower

energy solution were not recorded, but were counted to allow

the sampling of cluster populations to be determined cor-

rectly. Cluster representatives were compared to the crystallo-

graphic structure of the complex (PDB code 1BRS), by aligning

the backbone atoms in barnase and calculating the RMSD of

barstar backbone atoms. Some docked cluster representatives

were further refined by low temperature MD using the Amber

ff99SB force field of Hornak et al.[38] and the GBNeck implicit

solvent model of Mongan et al.[39] The structures of the

docked encounter complexes were first energy minimized,

before MD refinement. Initial velocities were drawn from a

Maxwell-Boltzmann distribution at 30 K, then heated to 200 K

over 50 ps, simulated at 200 K for a further 50 ps, then cooled

back to 30 K over 200 ps. The final complex structures

obtained were then compared to the known native docked

complex (PDB: 1BRS) and their binding affinities estimated

using the same GB model used during the simulations.

Case II: Many-molecule simulations of hen egg white lyso-

zyme. A crystal structure of HEWL (PDB code: 1HEL, 1.7 Å

resolution) was used to assess the performance of many-

molecule simulations in SDA 7. The protonation states of

HEWL at pH 3, 6, and 9 were assigned from experimental pKa

values, as described by Mereghetti et al.,[11] giving net charges

of 1 13 e, 1 8 e, and 1 7 e, respectively. Atomic partial charges

and radii were assigned from the PARSE force field.[40] Long-

range electrostatic potential grids of size 973 Å3 with a 1 Å

resolution were created by solving the linearized Poisson–

Boltzmann equation with APBS,[37] using an ionic strength of

5 mM, an ion radius of 1.5 Å, a protein dielectric constant of

2.0, a solvent dielectric of 78.0 and a temperature of 298.15 K.

Effective charges were calculated using the ECM module of

SDA 7, while short-range electrostatic and hydrophobic desol-

vation, and soft-core repulsive grids, of size 973 Å3 and 1 Å

spacing, were created using the make_edhdlj_grid module. An

initial configuration of 256 HEWL molecules was created using

the genbox tool in SDA 7 at a protein concentration of

150 mg/ml.

Two sets of simulations were performed to investigate the

scaling performance of the SDA 7 code. In the first, all 256

HEWL molecules were simulated in their pH 6 protonation

state. In the second, each HEWL molecule was randomly

assigned to a pH 3, 6, or 9 protonation state at the beginning

of the simulations, and transitions between states were per-

formed at regular intervals during the simulations. Two algo-

rithms for changing states were used, one where trial changes

in the state of a protein were accepted if they resulted in a

lowering of the interaction energy of that protein with its sur-

roundings, and another where trial moves were accepted

according to the Metropolis criterion.[29] All simulations were

performed using processor core counts ranging from 1 to 48,

with each simulation repeated 10 times with different initial

random seeds. All simulations were performed for 10 ns using

a 0.25 ps time step, with hydrodynamic interactions accounted

for using a mean-field approach[12] and longer range
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electrostatic interactions modeled using a Debye–H€uckel cor-

rection term.[32]

Two longer 500 ns BD simulations were also performed dur-

ing which each HEWL molecule was intially assigned to a ran-

domly chosen charge state. These states were allowed to

change during the simulations according to either the mini-

mum energy or Metropolis criteria. The fractional occupancies

of each charge state were then examined during the simula-

tion trajectories.

Case III: Docking of the linker histone H5 to the nucleo-

some. The initial conformation of the nucleosome was gener-

ated from a crystallographic structure of the core nucleosome

particle (PDB code: 1KX5, 1.9 Å resolution), with the linkers

extended by 20 base pairs using a lower resolution structure

(PDB code: 1ZBB, 9 Å resolution). Normal-mode analysis with

an elastic network model was performed using the Nomad-Ref

webserver,[41] to generate a flexible representation of the

linker regions, as described by Pachov et al.[33] Seven struc-

tures were selected to represent the lowest frequency vibra-

tional mode (70 to 76 in Ref[33]). The structure of the globular

domain of the linker histone H5 (gH5) was taken from the

crystal structure (chain B, PDB code: 1HST, 2.5 Å resolution).

Only long-range electrostatic interactions were taken into

account in the simulation. Titratable residues were protonated

using PDB2PQR[34,35] with the Amber force field,[36] resulting in

net charges of –237 e for the nucleosome and 1 11 e for gH5.

The electrostatic potential grids were calculated with APBS,[37]

by solving the nonlinearized Poisson–Boltzmann equation at

an ionic strength of 0.1 M, with an ion radius of 1.5 Å, a solute

dielectric constant of 2.0, a solvent dielectric of 78.54 and a

temperature of 298.15 K. Grid sizes were 2573 Å3 for the nucle-

osome and 1293 Å3 for gH5, with a 1.0 Å resolution. Effective

charges were calculated using ECM.

The docking simulation consisted of 25,000 trajectories with

a maximum simulation time of 100 ns for each trajectory. The

initial centre-to-centre distance between the nucleosome and

gH5 was set to 280 Å and the trajectories were stopped when

the distance between the centres of the solutes reached 500 Å.

Docked complexes were recorded when the centre-to-centre

distance was within 73 Å and the centre of gH5 was within 40

Å of the nucleosome dyad point, as defined by Pachov et al.[33]

Trial moves to adjacent nucleosome conformations, along the

lowest frequency normal mode, were attempted at a fixed inter-

val of 1.0 ns, and accepted according to the Metropolis

algorithm.

The 20,000 lowest energy docked complexes were recorded

for subsequent clustering. Complexes obtained using each

nucleosome conformation were clustered separately using the

clustering algorithm described by Motiejunas et al.[8] Docked

structures were only recorded if they had a RMSD larger than

1 Å, compared to a previously recorded lower energy solution,

but all complexes satisfying the above distance criteria were

counted to provide correct cluster populations.

Results

Case I: Bimolecular simulation of barnase–barstar association.

Calculations of the bimolecular association rate constant

were performed for barnase and barstar (Table 1, Fig. 4).

The association rate constants calculated ranged from 2.7 to

2:9 3108 M21s21 (Table 1), in good agreement with experi-

mental values, and values computed with previous versions of

SDA. The SDA 7 code scales well up to 48 cores, as used in the

benchmark, with a scaling factor of 39.7 and a scaling efficiency

of 83%. The single core performance is significantly improved in

SDA 7 with an average execution time of about 5000 s, com-

pared to approximately 10,000 s and 80,00 s, for SDA 6 com-

piled with gfortran 4.8.1 and ifort 11.1, respectively.

In separate simulations, the diffusional encounter complex

structure was predicted, using SDA 7 to dock barstar to bar-

nase (Table 1). The 1000 most energetically favorable com-

plexes, with atomic RMSDs of greater than 1 Å from each

other, from the 20,000 trajectories of each simulation were

clustered into five clusters. The second most populated cluster,

with a population of approximately 40% of complexes

sampled during the simulation, agreed closely with the crystal

structure, with a backbone RMSD of the cluster representative

of barstar of 4.8–4.9 Å. This cluster was also ranked second

energetically. In the most populated cluster, the barnase-

Table 1. Scaling of the Case I (barnase–barstar) benchmarks on different numbers of cores.

Number of cores

Association Docking

Time[a] Scaling[b] kon
[c] Time[a] Scaling[b] RMSD[d]

1 5128 6 126 1.00 6 0.02 2.7 6 0.2 31461 6 503 1.00 6 0.02 4.9 6 0.4

2 2705 6 154 1.90 6 0.11 2.7 6 0.1 15886 6 250 1.98 6 0.03 4.9 6 0.4

4 1307 6 16 3.92 6 0.05 2.8 6 0.3 7933 6 115 3.97 6 0.06 4.8 6 0.4

8 663 6 9 7.73 6 0.10 2.7 6 0.2 4047 6 36 7.77 6 0.07 4.9 6 0.4

12 446 6 6 11.50 6 0.16 2.8 6 0.3 2732 6 48 11.51 6 0.21 4.9 6 0.4

16 341 6 7 15.04 6 0.30 2.8 6 0.3 2085 6 40 15.09 6 0.29 4.8 6 0.4

24 235 6 4 21.83 6 0.35 2.8 6 0.2 1446 6 27 21.75 6 0.41 4.9 6 0.4

32 180 6 3 28.43 6 0.52 2.8 6 0.2 1130 6 20 27.82 6 0.51 4.8 6 0.2

48 129 6 8 39.69 6 2.43 2.9 6 0.3 899 6 157 34.97 6 6.10 4.9 6 0.3

[a] Mean simulation wall-time (s) with standard deviation. [b] Mean simulation performance scaling, relative to mean single core time, with standard

deviation. [c] kon (108 M21s21) calculated with an encounter complex definition of 2 independent native contacts within 6 Å, (see methods). [d] Root

mean squared deviation (Å) of representative of second most populated cluster of barstar to barstar in the complex in the PDB file, 1BRS.
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barstar interface was rotated approximately 90 8, relative to the

crystal structure. The representative clusters from the second

most populated cluster of each of the 90 SDA 7 simulations

(simulations with nine different numbers of processor cores,

repeated 10 times each) were relaxed with low temperature

MD. The RMSD of the interfacial residues of barstar, relative to

barnase, was monitored during the simulations by considering

all barstar heavy atoms within 6 Å of barnase in the crystal

structure. Prior to simulation, the RMSD of these atoms in the

90 cluster representatives, relative to the crystal structure, was

between 3.8 and 4.3 Å. While some complexes relaxed to

structures further from the native complex, 71 relaxed to con-

formations in which the RMSD of barstar’s interfacial heavy

atoms was below 3.5 Å, relative to the crystal structure, with

the lowest having an RMSD of 1.9 Å. The structure with the

most favorable binding affinity, as calculated from the final

complex structure using the same GB parameters as were

used in the simulation, had an interfacial heavy atom RMSD of

2.6 Å.

During this docking benchmark, SDA 7 scales up to 48 proc-

essor cores with a scaling factor relative to one core of 35.0, a

73% scaling efficiency. The single core performance is some-

what improved in SDA 7 with an average execution time of

about 31,000 s, compared to approximately 40,000 s and

32,000 s, for SDA 6 compiled with gfortran 4.8.1 and ifort 11.1,

respectively.

Case II: Many-molecule simulations of hen egg white lyso-

zyme. Simulations of 256 HEWL molecules were performed

first with protonation states fixed to those assigned at pH 6,

and then with each molecule able to switch between proto-

nation states assigned at pH 3, 6, and 9, at intervals during

the simulation. The simulation wall time for processor core

counts ranging from 1 to 48 was obtained and the scaling

factor calculated from the mean time required to run the

simulation on one core (Table 2, Fig. 5). For each of the

three simulation types, we see reasonable scaling up to 32

cores, but little or no improvement in performance when

increasing the core count to 48. The simulation times on a

given number of processors were very similar for the three

simulation types.

During the longer 500 ns simulations, the HEWL charge

states rapidly converged to the pH 9 charge states, that is, the

state in which HEWL has the lowest overall charge. During the

simulation in which trial transitions were accepted according

to the minimum energy criterion, after 10 ns all HEWL mole-

cules were in this state, and remained so for the rest of the

simulation (Supporting Information Fig. S1). During the simula-

tions that used the Metropolis acceptance criterion, the charge

states converged more slowly. After approximately 75 ns, all

HEWL molecules were in the pH 9 states, with only occasional

sampling of the other two states in the latter parts of the sim-

ulation (Supporting Information Fig. S2).

Case III: Docking of linker histone H5 to the nucleosome. The

docking of gH5 to the nucleosome took approximately 3.5 h

to complete on 12 processor cores. For each nucleosome con-

formation, the docked complexes were clustered into 10 clus-

ters. Table 3 shows the number of docked complexes obtained

for each nucleosome conformation, the population of the first

docked cluster, according to the total simulation sampling,

and the backbone RMSD of gH5 in the representative of the

first cluster and in the docked representative structure

obtained by Pachov et al.[33]

The majority of the high scoring complexes were obtained

with nucleosome conformations 70 (corresponding to the crystal

structure) and 71. In both cases, clustering the complex docking

solutions obtained with these nucleosome conformations

resulted in the most populated clusters containing approximately

80% of the sampled complexes. The lower number of docked

complexes for the other conformations of the nucleosome sug-

gests they formed weaker interactions. The representative of the

first cluster obtained with conformation 70 is in reasonable agree-

ment with the reference structure published by Pachov et al.,[33]

showing a backbone RMSD of 3.4 Å. An exact agreement cannot

Figure 4. Scaling performance for simulations of barnase and barstar to

compute a) the bimolecular association rate constant and b) the structures

of docked complexes. Error bars show standard deviations across 10 inde-

pendent simulations performed for each processor count. Dotted lines indi-

cate perfect scaling.
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be expected due to differences in the clustering procedures and

the number of trajectories sampled. Other conformations show

representative structures somewhat shifted from the reference

position, with the last 76 conformation giving a first docked clus-

ter far away from the reference binding site. Pachov et al. found

a similar distribution of RMSD values over the conformations of

this nucleosome mode with a very different binding location for

the linker histone to conformation 76 compared to all the other

conformations for this mode (see Fig. 2a in Pachov et al.[33])

Discussion

SDA 7 has been completely rewritten in order the combine

the existing SDA and SDAMM codes into a single framework.

A new modular and object-oriented approach has been used

to allow for easier integration of new methods. The new code

uses dynamic memory allocation and improved parallelization

to allow increasingly large systems to be investigated, up to

the limits imposed by the operating environment.

The results of the application cases presented are consistent

with previously published work, both computational and

experimental, and show no variation with respect to the num-

ber of processor cores used for the calculations. The bimolecu-

lar association rate constant for the diffusional association of

barnase and barstar was calculated to be 2.7–2:93108 M21s21,

in close agreement with the experimentally derived value of

2:863108 M21s21, obtained at pH 8 and 50 mM NaCl.[31] This

value compares favorably to the 3:883108 M21s21 reported

by Gabdoulline and Wade in a study that used a previous ver-

sion of SDA to model identical experimental conditions.[25] The

difference is likely due to sampling differences and the use of

different force fields for the initial atomic partial charge and

radius assignment, as the underlying method remains the

same.

Brownian dynamics docking using SDA 7 was able to predict

the native structure of the barnase-barstar complex to within

4.8–4.9 Å of the known crystal structure, within the second

most populated cluster (Table 1). This is consistent with the

results of Motiejunas et al.[8] who previously used SDA to dock

barstar to barnase and also found that the native structure

agreed more closely with their second most populated cluster.

It should be noted that SDA 7 is designed to predict diffusional

encounter complexes rather than fully docked complexes. The

exclusion grids used in SDA 7 to prevent two molecules from

overlapping each other often result in predicted complexes in

which the two interacting solutes have slightly increased sepa-

rations. To assess the docked solutions obtained with SDA, short

low-temperature MD simulations were performed to allow the

docked complexes to relax to more stable positions. Following

these simulations, the lowest RMSD of barstar’s interfacial heavy

atoms dropped from 3.8 to 4.3 Å, relative to the native crystal-

lographic structure, in the initial conformations to 1.9 Å, in the

lowest case, and 2.6 Å, in the lowest energy case, as estimated

from single-point GB calculations.

The bimolecular BD simulations described here are trivially

parallelizable as the large number of trajectories performed can

be split between threads easily. This is reflected in the scaling

shown in the benchmark simulations. There are, however, some

factors that limit scaling. As the simulations are of indetermi-

nate length, it is possible that a long lasting trajectory can

result in a single processor core continuing to complete a tra-

jectory while the others remain idle, having completed all other

required trajectories. Also, in the case of docking simulations,

we keep a global list of the highest scoring docked complexes

sampled across threads. Synchronisation of this list requires

occasional waiting times for some threads. The effects of this

are shown in the barnase-barstar simulations reported here,

where the 48 core docking benchmark shows only a 35-fold

reduction in execution time, compared to a single core simula-

tion, while the association benchmark shows a 40-fold reduc-

tion. Moreover, the new parallelization of SDA 7 does not

adversely affect single core performance, indeed, both associa-

tion and docking simulations in fact complete faster than equiv-

alent simulations with SDA 6.

The parallelization of many-molecule simulations is more

complex, with the force, trajectory propagation, and energy

calculation routines requiring that the previous routine has

completed for all threads before execution. Each of the 256

HEWL molecule benchmarks reported here show that we

obtain reasonable parallel scaling up to approximately 24

cores (Table 2, Fig. 5), with the three benchmarks showing 18-

Table 2. Scaling of the Case II (HEWL) benchmarks on different numbers of cores.

Number of cores

Single protonation state

Three protonation states

Minimum energy algorithm Metropolis algorithm

Time[a] Scaling[b] Time[a] Scaling[b] Time[a] Scaling[b]

1 6426 6 83 1.00 6 0.01 6480 6 217 1.00 6 0.03 6431 6 126 1.00 6 0.02

2 3273 6 30 1.96 6 0.02 3337 6 53 1.94 6 0.03 3300 6 44 1.95 6 0.03

4 1673 6 18 3.84 6 0.04 1695 6 18 3.82 6 0.04 1675 6 15 3.84 6 0.03

8 872 6 8 7.37 6 0.07 878 6 3 7.38 6 0.03 866 6 7 7.43 6 0.06

12 599 6 9 10.74 6 0.16 611 6 5 10.61 6 0.09 598 6 7 10.75 6 0.12

16 463 6 6 13.89 6 0.18 475 6 4 13.65 6 0.12 468 6 6 13.76 6 0.17

24 346 6 12 18.56 6 0.67 354 6 5 18.31 6 0.25 350 6 6 18.38 6 0.32

32 288 6 10 22.30 6 0.78 308 6 9 21.06 6 0.62 298 6 13 21.55 6 0.93

48 266 6 24 24.13 6 2.16 318 6 22 20.40 6 1.43 302 6 30 21.26 6 2.11

[a] Mean simulation wall-time (s) with standard deviation. [b] Mean simulation performance scaling relative to mean single core time with standard

deviation.
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to 19-fold reductions in execution time. In comparison, the 48

core benchmark showed only a 20- to 24-fold reduction. The

change of conformation algorithms had no significant effect

on scaling, with the scaling penalty appearing to be slightly

smaller for the Metropolis algorithm compared to the mini-

mum energy algorithm.

It was expected that the scaling of many-molecule simula-

tions would be dependent on both the number of proteins

within the simulation box and the density of the box. To test

this, we ran simulations of 256, 2500, and 5000 HEWL mole-

cules at pH 6 and a concentration of 15.0 mg/ml, on 1, 24, and

48 cores. The simulations were otherwise performed as

described previously. For 256 HEWL molecules, we observed

12-fold and 10-fold reductions in execution time for the 24

and 48 core runs respectively, relative to the single core run.

Comparing to Table 2, this showed that decreasing the protein

density, which results in a decrease in the number of force cal-

culations, the most computationally expensive step, resulted in

a lower scaling performance. However, for 2500 HEWL mole-

cules at 15.0 mg/ml, we observed 17-fold and 34-fold, and for

5000 HEWL molecules, 21-fold and 38-fold reductions. Thus,

increasing the total number of molecules improved the scaling

performance.

During the longer 500 ns simulations, in which each of the

256 HEWL molecules was able to switch between any of the

three charge states used in this work, the pH 9 charge state

was shown to be overwhelmingly more favorable. This is not

surprising, as all HEWL molecules will repel each other due to

their overall positive charge, while the pH 9 state has the low-

est overall charge ( 1 7 e, compared to 1 8 e and 1 13 e for pH

6 and pH 3, respectively). While this result does not represent

a physically realistic experiment, as the different charge states

relate to extremes in experimental conditions, we show it as a

demonstration of how the ability to model “flexible solutes”

can be used. More realistic results could be obtained by allow-

ing transitions between a set of protonation states accessible

at a given pH, or between different conformations of a flexible

solute, as shown in the docking simulations of the linker his-

tone H5 to the nucleosome. In these simulations, we were

able to reproduce previously reported predictions[33] in a more

efficient manner. By allowing the nucleosome to sample a

range of conformations during a single simulation, the

required simulation time can be reduced, as the simulation is

Figure 5. Scaling performance for 10 ns simulations of 256 HEWL mole-

cules a) with residue protonation states calculated at pH 6, and with proto-

nation states at pH 3, 6 and 9 with conformational switching using the b)

minimum energy, and c) Metropolis algorithms. Error bars show standard

deviations across ten independent simulations performed for each proces-

sor count. Dotted lines indicate perfect scaling.

Table 3. Clustering of Case III (linker histone H5-nucleosome) docking.

Conformation

Number of

solutions

First cluster

population (%) RMSD[a]

70 248,678 82 3.4

71 176,171 84 5.4

72 43,138 85 8.0

73 45,952 83 7.5

74 22,960 37 7.6

75 112,010 71 5.5

76 90,214 59 19.5

[a] Backbone RMSD (Å) of gH5 in the representative of the first cluster

and the structure obtained by Pachov et al.
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biased towards the most important complex-forming configu-

rations, and we can obtain the relative sampling of conforma-

tions within the lowest energy docked complexes (Table 3).

Concluding Remarks

SDA 7 is a major update of the SDA software. It has new func-

tionalities including the possibility to account for different con-

formations of the solutes and parallelization on multi-core

processors for bimolecular simulations. All development

branches of SDA have been consolidated into a single, com-

mon framework using an object-oriented, easily extendable

approach. The results obtained in the validation cases are con-

sistent with the results of previous published studies.

The SDA 7 code is available for download at http://mcm.h-

its.org/sda7, and is free of charge for noncommercial use. The

website includes documentation to guide new users, as well

as descriptions of example simulations that are included within

the distribution. An SDA 7 webserver (webSDA) is also avail-

able at http://mcm.h-its.org/webSDA.
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APPENDIX A: SOLUTE INTERACTION FORCE
FIELD IN SDA 7

This appendix describes the different force field options avail-

able in SDA 7. All terms in the force field are optional and can

be chosen in the input file. In general, all force and energy

terms are precomputed, and stored in memory in 3-

dimensional grids, or in 1-dimensional arrays, in the case of

isotropic distance-dependent interactions. An exception to this

is a short-range analytical correction to the method of images

charge model used to describe the electrostatic interaction of

solutes with conducting surfaces.

In SDA 7, the total interaction energy DG122 between a pair of

solutes, 1 and 2, is represented as

DG1225DG122
el 1G122

edesolv1DG122
DH ðrÞ

1DG122
np 1DG122

rep

(A1)

where DG122
el models long-range electrostatic pair interactions,

G122
edesolv models short-range charge desolvation interactions

and DG122
DH ðrÞ is a distance-dependent Debye-H€uckel correction

to the long-range pair term, that accounts for the use of

finite-sized grids in this calculation. These first three terms

approximate the Poisson-Boltzmann electrostatic interaction

free energy between solute pairs. The last two terms in eq.

(A1) model the non-polar interactions between solute pairs. D
G122

np is a non-polar desolvation term that describes the

change in the total solute-solvent interface area as two solutes

bind to each other, while DG122
rep is a soft-core repulsive term

that prevents solutes from overlapping.

When simulating a system which contains a immobile surface,

each of the interaction terms in eq. (A1), other than the long-

range electrostatic correction DG122
DH ðrÞ, can be used to

describe interactions with the surface. If a metal surface is

present, SDA 7 includes additional interaction terms to

account for the electrostatic interactions of solutes with the

surface using a method of images charge model, for the des-

olvation of the metal surface, and for the van der Waals inter-

actions between the mobile solute and the metal surface.

These interactions form the basis of the ProMetCS force field,

described by Kokh et al.[10]

Electrostatic interactions

Electrostatic interactions, because of their long range, are a

driving component in the dynamics of biomacromolecular

association. The electrostatic solvation free energy of a

charged solute in solution can be obtained by first solving the

Poisson–Boltzmann equation to obtain the electrostatic poten-

tial induced in a polarisable dielectric medium by the charge

density of the solute, then calculating the work required to

charge the solute within this induced potential. The electro-

static interaction free energy between a pair of solutes sepa-

rated at a distance from each other can be calculated as the

difference between the electrostatic solvation free energy of

the combined two solute system and the individual solutes. To

avoid this expensive calculation at each step of the simulated

trajectory, SDA employs the Effective Charge Model (ECM), first

described by Gabdoulline and Wade,[28] to approximate the

Poisson-Boltzmann derived electrostatic interaction free

energy.

Effective charges and long-range electrostatic interactions. In

the Effective Charge Model (ECM),[28] the electrostatic potential

surrounding each solute, in isolation within a polarisable dielec-

tric medium, is calculated prior to simulation, by solution of the

Poisson–Boltzmann equation, using a set of partial atomic charges

to represent the solute charge density and suitable solute interior

and solvent dielectric constants. A set of effective solute charges

are then generated, which are fitted such that they, in a uniform

dielectric, reproduce the computed electrostatic potential in a shell

around the solute. During simulations, the long-range electrostatic

interaction free energy between a pair of solutes DG122
el is calcu-

lated from the interaction between the effective charges on one

solute with the electrostatic potential field surrounding the other,

according to

DG122
el 5

1

2

X
i1

qi1 Uel2ðri1
Þ1 1

2

X
i2

qi2 Uel1ðri2
Þ (A2)

where qin
is an effective charge on solute n and Uelm

ðrin
Þ is the

electrostatic potential of solute m, at the position of effective

charge qin
on solute n. The 1

2
factors are present to prevent

double counting of the interaction.
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Short-range electrostatic desolvation. As a pair of solutes

approach each other to form a binding interface, the exclusion

of the high dielectric solvent from this interface results in the

desolvation of surface-lying charges. This results in an unfavor-

able contribution to the binding free energy of the two sol-

utes. The long-range electrostatic term described above is

unable to account for this effect, so in SDA this is modeled

separately, as the interaction between effective charges on

one solute and the electrostatic desolvation potential of the

other solute,[42] according to

DG122
edesolv5

X
i1

q2
i1

Uedesolv2
ðri1Þ1

X
i2

q2
i2

Uedesolv1
ðri2
Þ (A3)

where Uedesolvm
ðrin
Þ, the electrostatic desolvation potential of

solute m at the position of effective charge qin
on solute n,

describes the effect of the reduction in the dielectric constant

at this point. The potential at point r surrounding a solute is

given by

UedesolvðrÞ5a
�s2�p

�sð2�s1�pÞ
X

j

a3
j

ð11jrjÞ2

r4
j

e22jrj (A4)

where a is an empirical scaling parameter, �s and �p are the

solvent and solute interior dielectric constants, respectively, j
is the inverse of the Debye length, which is dependent on the

ionic strength of the solvent. The sum runs over all solute

atoms j of radius aj. The parameter a is used to scale the

interaction.

Long-range Debye–H€uckel electrostatic correction. The use of

finite sized grids to model long-range electrostatic interactions

can introduce errors due to the truncation of the potential at

the grid boundary. To minimize such errors, it is necessary to

use grids that are large enough such that this truncation error

remains small. In low ionic strength media, where the low

charge shielding of the solvent means that the electrostatic

potential surrounding a solute decays slowly with distance,

this can require grid sizes that demand significant memory

resources during calculations.

SDA 7 includes a Debye-H€uckel electrostatic correction term[32]

that allows for the truncation of grid-based electrostatic inter-

actions, while modeling longer-range interactions with a

distance-dependent term. At separations r where the electro-

static potentials surrounding two solutes can be approximated

as being spherically symmetric, the interaction between the

solutes can be modeled as that between a pair of Debye-

H€uckel spheres of net charges z1 and z2, and radii a1 and a2,

using

DG122
DH ðrÞ5

z1z2e2
l e2jðr2ða11a2ÞÞ

4p�0�srð11jða11a2ÞÞ
(A5)

where el is the elementary charge, �0 is the vacuum permittiv-

ity, �s the dielectric constant of the solvent, and j is the

inverse of the Debye length. The net charge on each solute is

taken as the sum of the effective charges on that solute, while

the radius is the Stokes hydrodynamic radius.

To smooth the transition between the grid-based distance-

dependent electrostatic calculations, the electrostatic grids are

made spherical. When the atoms of one solute straddle the

spherical grid boundary of a second, a hybrid calculation is

performed, with interactions due to the effective charges lying

within the boundary modeled with the full grid treatment,

and the net charge used in the Debye-H€uckel correction

reduced to account for only those charges lying outside the

boundary.

Nonpolar interactions

Nonpolar desolvation. Placing a solute in solution requires

that a cavity of suitable size is created within the solvent, an

energetically unfavorable process. As two solutes form a bind-

ing interface with each other, the total solute–solvent interface

is reduced, resulting in an increased binding affinity. In SDA 7,

this interaction is assumed to be proportional to the solvent

accessible surface area of a solute that is occluded by the

interacting solute, as described by Gabdoulline and Wade.[9] It

is calculated as

DG122
np 5

X
i1

SASAi1 Unp2
ðri1
Þ1
X

i2

SASAi2 Unp1
ðri2
Þ (A6)

where Unpm
ðrin
Þ is the non-polar burial potential of solute m at

the position of surface-lying atom in of solute n, and SASAin
is

the solvent accessible surface of atom in. The non-polar burial

potential at a position r surrounding a protein is given by

UnpðrÞ5bc

1 rmin < a

b2rmin

b2a
a < rmin < b

0 rmin > b

8>>><
>>>:

(A7)

where factor b is the constant of proportionality between bur-

ied area and non-polar desolvation energy, c is a factor that

prevents double counting of the buried area when calculating

the sum in eq. (A6), parameters a and b define the maximum

distance an interacting solute atom can lie from the molecular

surface, while being totally occluded by it, and the minimum

distance at which its solvation is not affected, respectively. The

distance rmin represents the minimum distance from r to the

molecular surface of the solute.

Inclusion of the non-polar desolvation term was found impor-

tant for the computation of protein-protein electron transfer

rates with SDA.[9]

Solute Repulsion. Repulsive interactions that prevent the

overlap of solutes are modeled in two ways in SDA. In bimo-

lecular simulations, overlaps are prevented by the use of

excluded volume grids. The excluded volume grid of a solute

is defined by the molecular surface of that solute. If a BD

move places an atom of one solute within the excluded vol-

ume of another solute, the move is repeated with a different

random displacement until a move is made that results in no

overlap.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 1631–1645 1643

http://onlinelibrary.wiley.com/


A soft-core repulsive interaction term was introduced[11] to

remove the need to test for excluded volume violations in

many-molecule simulations. The repulsive interaction is given

by

DG122
rep 5

X
i1

Erep2
ðri1 Þ1

X
i2

Erep1
ðri2Þ (A8)

where the sums run over all solvent accessible atoms in each sol-

ute and Erepm
is the repulsive interaction potential which tends

to a large but finite positive value at zero separation and decays

to zero at large separations. The potential at a point r around a

solute is calculated according to

ErepðrÞ5c
X

i

1

ðai

rÞ
nexp

1jr2rijnexp (A9)

where ri is the position of solvent accessible surface atom i of

the solute, ai is its radius, c is a parameter that defines the

magnitude of the function, parameter r defines the smooth-

ness of the potential and nexp its distance decay rate.

Interactions of mobile solutes with metal surfaces

While biomacromolecular association may be predominantly

controlled by long-range electrostatic interactions, the associa-

tion of biomacromolecules to uncharged metal surfaces can be

controlled by polarisation effects that occur at a much shorter

range. Kokh et al[10] developed the ProMetCS force field to

account for these effects in BD simulations of proteins in the

presence of a gold surface, and this force field is available in SDA

7. The interaction terms used in the force field are described

below.

Electrostatic Interactions of Solutes with Conducting Surfaces.

SDA 7 represents the electrostatic interaction of a solute S with a

conductive metal surface M using a method of images charge

model, which is implemented using an effective charge approxima-

tion analogous to the solute-solute electrostatic model. In this, the

solute-surface electrostatic interaction is defined as an interaction

between the solute effective charges qi, immersed in a uniform

high-dielectric solvent medium, with the electrostatic potential of

the solute image reflected in the plane of the surface. The interac-

tion is given by

DGM2S
elim

5
X

i

UelimðriÞqi (A10)

where the electrostatic potential of the solute image is

UelimðriÞ � 2UelSðrjÞ, and ri � ðxi; yi; zi12zCGÞ and rj � ðxi; yi;2zi

22zCGÞ are vectors from the geometric centres of the image

and real protein, respectively, to an effective charge i, and zCG is

the height of the solute centre above the metal surface. As a

solute approaches distances close to metal surface, charged

atoms on the surface of the solute become desolvated, and this

is accounted for with an electrostatic desolvation term analo-

gous to eq. (A3).

At small solute-surface separations, the low-dielectric cavities of the

solute and the metal begin to merge (i.e. the solute partially or com-

pletely replaces the hydration shell of the metal at the solute-metal

interface). This produces a highly favorable binding interaction. A

short-range electrostatic correction term is employed to model this

strong electrostatic binding. It is calculated for all effective charges

at heights z< 5.5 Å above the surface, as a Coulomb interaction

with their images in a low-dielectric environment. For this a variable

dielectric constant is introduced as

�ðzÞ54:010:8z21expð z
0:385 210:4Þ, where z is in Å, (see details of

parameterisation procedure in Ref[10]). The short-range analytical

electrostatic correction term replaces the standard electrostatic

potential (for the dielectric constant of solvent �s) for the corre-

sponding image charges. The short-range analytical correction D
GM2S

corr is calculated as

DGM2S
corr 5

X
i

X
j

qiqj

2rijð4p�0Þ
1

�s
2

2

�ðzi1zjÞ

� �
(A11)

where rij is the distance between a real effective charge qi and

image charge qj, and zi and zj are the distances between effec-

tive charges i and j and the plane of the surface.

The implemented approximation for short-range electrostatic

interactions based on the values of effective charges should

be treated with caution if the interactions are very strong, ie if

a very low ionic strength solution or highly charged mobile

solutes (for example, DNA) are used. In these cases, the

charges used in the short-range electrostatic term can be

scaled using the input parameter correction_image_charge.

Metal Surface Desolvation. As a solute S approaches and

adsorbs to a metal surface M, it must displace solvent mole-

cules from the hydration layers of the metal. The effects of

this displacement can be modeled using a metal desolvation

potential

DGM2S
metd5

X
i

UmetdðziÞSdesolv
i (A12)

where Sdesolv
i is the area of the metal surface desolvated by a

solute atom i and UmetdðzÞ is the metal desolvation potential

at a height z above the metal surface, which is given by

UmetdðziÞ5
U0

metd zi � Zadw

U0
metdexpð2ðzi2Zadw=cÞÞ Zadw < zi < Zmax

0 zi > Zmax

8>><
>>:

(A13)

where U0
metd is the desolvation potential of the first hydration

layer, Zadw is the height of the first hydration layer above the

metal surface, and Zmax is the maximum height a solute can

be above the metal surface, while still affecting its solvation.

Lennard–Jones interactions. Kokh et al.[10] introduced a

Lennard-Jones interaction term to model the van der Waals and

weak chemical interactions between solutes and metal surfaces,

as a component of the ProMetCS force field. In contrast to the
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other force field terms, interaction potential grids are calculated

for each solute atom type tS. The total Lennard-Jones interac-

tion energy between a solute S and metal surface M is given

by

DGM2S
LJ 5

X
tM

X
iM

UtM

LJS
ðriM
Þ (A14)

where the potential UtM

LJS
ðriM
Þ, centred on solute S, describes

the Lennard-Jones interaction of a probe atom of type tM at

the position of atom iM of this type on the interacting surface.

The potential UtM

LJ ðrÞ that acts on a probe atom of type tM at a

position r from the solute centre, is given by

UtM

LJ ðrÞ5
X

tM

X
iS

4�tMtS

rtM tS

r

� �12

2
rtM tS

r

� �6
� �

(A15)

where the first sum runs over the atom types tM on the metal

surface, the second sum runs over atoms iS of the solute, tS is

the atom type of solute atom iS, r is the distance from the

centre of the solute to the point r, and �tM tS
and rtM tS

are

Lennard-Jones parameters describing the interaction between

atoms of type tM and tS.

In ProMetCS,[10] eqs. (A14) and (A15) have been been parame-

terized for the interaction of proteins with gold surfaces by fit-

ting to the all-atom GolP force field of Iori et al.[43]
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