Generating Reaction criteria for simulating protein-ligand association with SDA

0.1 Introduction

A set of reaction criteria, that define the formation of an encounter complex between 2 solutes, need to be specified for performing docking and association rate calculations with SDA. Usually, donor-acceptor atom pairs in the bound protein-ligand complexes are considered as reaction criteria but other types of interacting atom pairs can also be included. These reaction criteria must be validated for the complex to be accepted and recorded in the *complexes* file. The list of reaction criteria must be provided in a separate file (named with a suffix *.rxna), which consists of a set of definitions like:

 #keyword
 criteria for solute 1 | distance|
 criteria for solute 2

 CNONS ATOM
 540
 0E2 GLU A 60
 26.527
 32.135
 -0.455 | 60.00| ATOM
 332 N
 LEU D 34
 28.306
 33.610
 1.176

They consist of a 5 letter keyword for the type of reaction criterion (e.g. CNONS refers to non-specific criteria, CSPEC refers to a specific reaction criteria), the position of the reaction criteria of the solute 1 in PDB format, the distance criterion, and the position of the reaction criteria of the solute 2 in PDB format.

0.2 Reaction Criteria. py

The python script *ReactionCriteria.py* generates reaction criteria file (*.rxna* file) required by the SDA software for docking or calculation of association rates for protein-ligand association. It generates the reaction criteria by taking into account the hydrogen bonding interactions, halogen- π interactions, and the π - π interactions in the bound protein-ligand complex.

0.2.1 Input parameters:

It requires total 4 arguments where the 4th argument is optional:

- 1) Name of PDB file of the protein^{*} (with .pdb extention)
- 2) Name of PDB file of the ligand* (with .pdb extension)
- 3) The reaction distance (in Å)
- 4) Name of MOL2 file of the ligand** (OPTIONAL ARGUMENT)

The script uses PyMOL function to add hydrogens (in case H atoms are missing in the input PDB files).

The MOL2 file for ligand can also be provided as an optional fourth argument, if π - π interactions between protein and ligand also need to be considered for generating reaction criteria.

0.2.2 Usage

python ReactionCriteria.py protein_pdb ligand_pdb distance ligand_mol2

protein_pdb is the name of PDB file of the protein with .pdb extension.

ligand_pdb is the name of the PDB file of the ligand with .pdb extension.

distance is the distance (integer value) for recording encounter complexes in docking simulations (although this distance value is ignored in association rate calculations, it should always be included as an argument due to the fixed format of the .rxna file).

ligand_mol2 is the name of the Tripos Mol2 file of the ligand with .mol2 extension (optional argument, used only when π - π interactions between protein and ligand also need to be considered).

0.2.3 Example Case

The reaction criteria for the diffusional association of Human Coagulation Factor Xa (FXa.pdb) and Rivaroxaban (RIV.pdb) can be generated using *ReactionCriteria.py* as:

python ReactionCriteria.py FXa.pdb RIV.pdb 6 RIV.mol2

(*** Output file is generated in the same directory with name : RIV.rxna ***)

cat RIV.rxna

CNONS ATOM	1285	N THR	98	10.829	0.686	12.834	6.00	ATOM	5	05	RIV	A1001	9.768	1.124	16.111
CNONS ATOM	1299	N TYR	99	12.420	2.291	14.218	6.00	ATOM	5	05	RIV	A1001	9.768	1.124	16.111
CNONS ATOM	1304	CG TYR	99	11.462	4.585	16.400	6.00	ATOM	10	C10	RIV	A1001	7.918	4.619	19.048
CNONS ATOM	2538	CD2 PHE	174	7.510	-1.643	20.690	6.00	ATOM	11	C11	RIV	A1001	6.837	2.690	20.070
CNONS ATOM	3174	CG TRP	215	11.647	4.092	20.850	6.00	ATOM	12	C12	RIV	A1001	7.682	3.222	19.078
CNONS ATOM	3215	N GLY	219	4.929	4.193	26.175	6.00	ATOM	17	017	RIV	A1001	4.690	6.614	23.757
CNONS ATOM	3215	N GLY	219	4.929	4.193	26.175	6.00	ATOM	19	019	RIV	A1001	4.634	4.419	23.228
CNONS ATOM	3218	0 GLY	219	6.537	5.971	27.315	6.00	ATOM	21	N21	RIV	A1001	7.078	8.136	24.932
CNONS ATOM	3370	CD1 TYR	228	17.445	5.720	26.819	6.00	ATOM	29	CL	RIV	A1001	13.544	7.302	26.531