Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
projects:tauramddescription [2019/06/07 09:15]
richter created
projects:tauramddescription [2019/06/07 09:18]
richter
Line 1: Line 1:
-RAMD and its applications (using the implementation in NAMD) are described in: +<​html><​h2>​RAMD and its applications (using the implementation in NAMD) are described in:</h2> 
-Kokh DB et. al. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput.2018;​ DOI: 10.1021/​acs.jctc.8b00230 + 
-Niu, Y., Li, S., Pan, D., Liu, H., Yao, X. Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, 18 (7),5622– 5629, DOI: 10.1039/​C5CP06257H + 
-Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects , (2016) 1860:67-78, DOI: 10.1016/​j.bbagen.2015.10.015 + 
-Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:143-154, DOI: 10.2174/​138920012798918462 +<​ul><​li>​Kokh DB et. al.&nbsp;Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations.&​nbsp;<​em>​J. Chem. Theory Comput.</em>2018;&​nbsp;<​a href="​https://​pubs.acs.org/​doi/​10.1021/​acs.jctc.8b00230"​ target="​_blank"​ rel="​noreferrer noopener">​DOI: 10.1021/​acs.jctc.8b00230</​a></​li><​li>​Niu, Y.,&nbsp;Li, S.,&nbsp;Pan, D.,&nbsp;Liu, H.,&nbsp;Yao, X.&nbsp;Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations.&​nbsp;<​em>​Phys. Chem. Chem. Phys.</​em>&​nbsp;​2016,&​nbsp;<​em>​18</​em>&​nbsp;​(7),5622–&nbsp;5629,&​nbsp;<​a href="​http://​pubs.rsc.org/​en/​content/​articlelanding/​2016/​cp/​c5cp06257h#​!divAbstract"​ target="​_blank"​ rel="​noreferrer noopener">​DOI: 10.1039/​C5CP06257H</​a></​li><​li>​Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade.&nbsp;Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects , (2016) 1860:67-78,&​nbsp;<​a href="​https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC4689311/"​ target="​_blank"​ rel="​noreferrer noopener">​DOI: 10.1016/​j.bbagen.2015.10.015</​a></​li><​li>​Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:143-154,&​nbsp;<​a href="​http://​www.eurekaselect.com/​75602/​article"​ target="​_blank"​ rel="​noreferrer noopener">​DOI: 10.2174/​138920012798918462</​a></​li><​li>​Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008).<a href="​http://​dx.doi.org/​10.1529/​biophysj.108.139675">​DOI:​10.1529/​biophysj.108.139675</​a></​li></​ul>​ 
-Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008).DOI:​10.1529/​biophysj.108.139675 + 
-RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in: + 
-Lüdemann SK, Carugo O, Wade RC. Substrate access to cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. (1997) 3, 369-374. DOI:​10.1007/​s008940050053 (Initial ARGOS implementation) + 
-Luedemann, S.K., Lounnas, V. and R. C. Wade. How do Substrates Enter and Products Exit the Buried Active Site of Cytochrome P450cam ? 1. Random Expulsion Molecular Dynamics Investigation of Ligand Access Channels and Mechanisms. J Mol Biol, 303:797-811 (2000). doi:​10.1002/​jmbi.2000.4154 (First description of method and implementation in ARGOS) +<h2>RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in:</​h2>​ 
-Luedemann, S.K., Gabdoulline,​R.R.,​ Lounnas, V. and R. C. Wade. Substrate access to cytochrome P450cam investigated by molecular dynamics simulations:​ An interactive look at the underlying mechanisms. Internet Journal of Chemistry, 4, 6 (2001). http://​www.ijc.com/​articles/​2001v4/​6/​ (using the ARGOS implementation) + 
-Winn,P., Luedemann, S.K., Gauges,R., Lounnas, V. and R. C. Wade. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a new functional role for a buried arginine PNAS, 99, 5361-5366 (2002). Full text (using the ARGOS implementation) + 
-Schleinkofer,​ K., Sudarko, Winn,P., Luedemann, S.K. and R. C. Wade. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling?​ EMBO Reports, 6, 584-589 (2005).doi:​10.1038/​sj.embor.7400420 + 
-Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).doi:​10.1529/​biophysj.106.082917 (Implementation in CHARMM) +<​ul><​li>​Lüdemann SK, Carugo O, Wade RC. Substrate access to cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. (1997) 3, 369-374.&​nbsp;<​a href="​https://​link.springer.com/​article/​10.1007%2Fs008940050053"​ target="​_blank"​ rel="​noreferrer noopener">​DOI:​10.1007/​s008940050053</​a>&​nbsp;​(Initial ARGOS implementation)</​li><​li>​Luedemann, S.K., Lounnas, V. and R. C. Wade. How do Substrates Enter and Products Exit the Buried Active Site of Cytochrome P450cam ? 1. Random Expulsion Molecular Dynamics Investigation of Ligand Access Channels and Mechanisms. J Mol Biol, 303:797-811 (2000).&​nbsp;<​a href="​http://​dx.doi.org/​10.1006/​jmbi.2000.4154">​doi:​10.1002/​jmbi.2000.4154</​a>&​nbsp;​(First description of method and implementation in ARGOS)</​li><​li>​Luedemann, S.K., Gabdoulline,​R.R.,​ Lounnas, V. and R. C. Wade. Substrate access to cytochrome P450cam investigated by molecular dynamics simulations:​ An interactive look at the underlying mechanisms. Internet Journal of Chemistry, 4, 6 (2001).&​nbsp;<​a href="http://​www.ijc.com/​articles/​2001v4/​6/​">​http://​www.ijc.com/​articles/​2001v4/​6/</​a>&​nbsp;​(using the ARGOS implementation)</​li><​li>​Winn,P., Luedemann, S.K., Gauges,R., Lounnas, V. and R. C. Wade. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a new functional role for a buried arginine PNAS, 99, 5361-5366 (2002).&​nbsp;<​a href="​http://​www.pnas.org/​cgi/​content/​full/​99/​8/​5361">​Full text</​a>&​nbsp;​(using the ARGOS implementation)</​li><​li>​Schleinkofer,​ K., Sudarko, Winn,P., Luedemann, S.K. and R. C. Wade. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling?​ EMBO Reports, 6, 584-589 (2005).<a href="​http://​dx.doi.org/​10.1038/​sj.embor.7400420">​doi:​10.1038/​sj.embor.7400420</​a></​li><​li>​Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).<a href="​http://​dx.doi.org/​10.1529/​biophysj.106.082917">​doi:​10.1529/​biophysj.106.082917</​a>&​nbsp;​(Implementation in CHARMM)</​li><​li>​Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin.&nbsp;J. Am. Chem. Soc. 129, 6970-6971 (2007).<a href="​http://​dx.doi.org/​10.1021/​ja0691977">​doi:​10.1021/​ja0691977</​a></​li><​li>​Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).<a href="​http://​dx.doi.org/​10.1371/​journal.pone.0006081">​doi:​10.1371/​journal.pone.0006081</​a>&​nbsp;​(Implementation of a variant of RAMD in GROMACS)</​li><​li>​Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).<a href="​http://​dx.doi.org/​10.1007/​s00249-008-0369-x">​doi:​10.1007/​s00249-008-0369-x</​a></​li><​li>​Klvana, M. et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations J. Mol. Biol. 392, 1339-1356 (2009).<a href="​http://​dx.doi.org/​10.1016/​j.jmb.2009.06.076">​doi:​10.1016/​j.jmb.2009.06.076</​a></​li><​li>​Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009).<a href="​http://​dx.doi.org/​10.1038/​nchembio.205">​doi:​10.1038/​nchembio.205</​a></​li><​li>​Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009).<a href="​http://​dx.doi.org/​10.1016/​j.jmb.2009.07.093">​doi:​10.1016/​j.jmb.2009.07.093</​a></​li></​ul>​ 
-Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin. J. Am. Chem. Soc. 129, 6970-6971 (2007).doi:​10.1021/​ja0691977 + 
-Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).doi:​10.1371/​journal.pone.0006081 (Implementation of a variant of RAMD in GROMACS) + 
-Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).doi:​10.1007/​s00249-008-0369-x + 
-Klvana, M. et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations J. Mol. Biol. 392, 1339-1356 (2009).doi:​10.1016/​j.jmb.2009.06.076 +<h2>Tutorial on application of RAMD</h2> 
-Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009).doi:​10.1038/​nchembio.205 + 
-Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009).doi:​10.1016/​j.jmb.2009.07.093 + 
-Tutorial on application of RAMD + 
-A tutorial describing the τRAMD process of setting up and running RAMD simulations for estimation of the relative residence time (τ) of a protein-small molecule complex can be found here.+<p>A tutorial describing the&​nbsp;<​a href="​https://​www.h-its.org/​downloads/​ramd/"​ target="​_blank"​ rel="​noreferrer noopener">​τRAMD</​a>&​nbsp;​process of setting up and running RAMD simulations for estimation of the relative residence time (τ) of a protein-small molecule complex can be found&​nbsp;<​a href="​http://​kbbox.h-its.org/​toolbox/​tutorials/​estimation-of-relative-residence-times-of-protein-ligand-complexes-using-random-acceleration-molecular-dynamics-ramd/"​ target="​_blank"​ rel="​noreferrer noopener">​here.</​a></​p>​ 
 +      <a href="​https://​www.h-its.org/​software/​ramd/">​Read more</​a>​ 
 +  </​div>​ 
 +                   
 +<div class="​software-preview">​ 
 +  <​h3>​τRAMD</​h3>​ 
 +   
 +<​p>​τ-random acceleration molecular dynamics (τRAMD) is a protocol based on the RAMD method for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanism.</​p>​ 
 +      <a href="​https://​www.h-its.org/​downloads/​ramd/">​Read more</​a>​ 
 +  </​div>​ 
 +</​html>​
Navigation
Print/export