Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
projects:tauramddescription [2019/06/07 09:31]
richter
projects:tauramddescription [2020/07/21 14:53]
wade [Tutorial on application of RAMD]
Line 1: Line 1:
-<​html><​h2>​RAMD and its applications (using the implementation in NAMD) are described in:</h2>+=====References===== 
 +====RAMD and its applications (using the implementation in Gromacs) are described in:==== 
 +  * Kokh DB et. al. A Workflow for Exploring Ligand Dissociation from a Macromolecule:​ Efficient Random Acceleration Molecular Dynamics Simulation and Interaction Fingerprints Analysis of Ligand Trajectories. **arXiv** 2020 [[https://​arxiv.org/​abs/​2006.11066| arXiv:​2006.11066]]  
 +====RAMD and its applications (using the implementation in NAMD) are described in:==== 
 +  * Kokh DB et. al. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times. Front. Mol. Biosci. 2019 [[https://​www.frontiersin.org/​articles/​10.3389/​fmolb.2019.00036/​full|DOI:​ 10.1021/​acs.jctc.8b00230]]  
 +  * Kokh DB et. al. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018, **14**, 7, 3859–3869 2018 [[https://​pubs.acs.org/​doi/​abs/​10.1021/​acs.jctc.8b00230|DOI:​ 10.1021/​acs.jctc.8b00230]]  
 +  * Niu, Y., Li, S., Pan, D., Liu, H., Yao, X. Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, **18** (7),​5622–5629,​ [[http://​pubs.rsc.org/​en/​content/​articlelanding/​2016/​cp/​c5cp06257h#​!divAbstract|DOI:​ 10.1039/​C5CP06257H]] 
 +  * Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects, (2016) 1860:67-78, [[https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC4689311/​|DOI:​ 10.1016/​j.bbagen.2015.10.015]] 
 +  * Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:143-154, [[http://​www.eurekaselect.com/​75602/​article|DOI:​ 10.2174/​138920012798918462]] 
 +  * Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008). [[http://​dx.doi.org/​10.1529/​biophysj.108.139675|DOI:​10.1529/biophysj.108.139675]]
  
 +====RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in====
 +  * Lüdemann SK, Carugo O, Wade RC. Substrate access to cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. (1997) 3, 369-374. [[https://​link.springer.com/​article/​10.1007%2Fs008940050053|DOI:​10.1007/​s008940050053]] (Initial ARGOS implementation)
 +  * Luedemann, S.K., Lounnas, V. and R. C. Wade. How do Substrates Enter and Products Exit the Buried Active Site of Cytochrome P450cam ? 1. Random Expulsion Molecular Dynamics Investigation of Ligand Access Channels and Mechanisms. J Mol Biol, 303:797-811 (2000). [[http://​dx.doi.org/​10.1006/​jmbi.2000.4154|doi:​10.1002/​jmbi.2000.4154]] (First description of method and implementation in ARGOS)
 +  * Luedemann, S.K., Gabdoulline,​R.R.,​ Lounnas, V. and R. C. Wade. Substrate access to cytochrome P450cam investigated by molecular dynamics simulations:​ An interactive look at the underlying mechanisms. Internet Journal of Chemistry, 4, 6 (2001). [[
 +http://​www.ijc.com/​articles/​2001v4/​6/​|http://​www.ijc.com/​articles/​2001v4/​6/​]] (using the ARGOS implementation)
 +  * Winn,P., Luedemann, S.K., Gauges,R., Lounnas, V. and R. C. Wade. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a new functional role for a buried arginine PNAS, 99, 5361-5366 (2002). [[http://​www.pnas.org/​cgi/​content/​full/​99/​8/​5361|Full text]] (using the ARGOS implementation)
 +  * Schleinkofer,​ K., Sudarko, Winn,P., Luedemann, S.K. and R. C. Wade. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling?​ EMBO Reports, 6, 584-589 (2005). [[http://​dx.doi.org/​10.1038/​sj.embor.7400420|doi:​10.1038/​sj.embor.7400420]]
 +  * Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).[[http://​dx.doi.org/​10.1529/​biophysj.106.082917|doi:​10.1529/​biophysj.106.082917]] (Implementation in CHARMM)
 +  * Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin J. Am. Chem. Soc. 129, 6970-6971 (2007).[[http://​dx.doi.org/​10.1021/​ja0691977|doi:​10.1021/​ja0691977]]
 +  * Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).[[http://​dx.doi.org/​10.1371/​journal.pone.0006081|doi:​10.1371/​journal.pone.0006081]] (Implementation of a variant of RAMD in GROMACS)
 +  * Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).[[http://​dx.doi.org/​10.1007/​s00249-008-0369-x|doi:​10.1007/​s00249-008-0369-x]]
 +  * Klvana, M. et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations J. Mol. Biol. 392, 1339-1356 (2009). [[http://​dx.doi.org/​10.1016/​j.jmb.2009.06.076|doi:​10.1016/​j.jmb.2009.06.076]]
 +  * Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009). [[http://​dx.doi.org/​10.1038/​nchembio.205|doi:​10.1038/​nchembio.205]]
 +  * Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009). [[http://​dx.doi.org/​10.1016/​j.jmb.2009.07.093|doi:​10.1016/​j.jmb.2009.07.093]]
  
  
-<​ul><​li>​Kokh DB et. al.&​nbsp;​Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations.&​nbsp;<​em>​J. Chem. Theory Comput.</​em>​2018;&​nbsp;<​a href="​https://​pubs.acs.org/​doi/​10.1021/​acs.jctc.8b00230"​ target="​_blank"​ rel="​noreferrer noopener">​DOI:​ 10.1021/​acs.jctc.8b00230</​a></​li><​li>​Niu,​ Y.,&​nbsp;​Li,​ S.,&​nbsp;​Pan,​ D.,&​nbsp;​Liu,​ H.,&​nbsp;​Yao,​ X.&​nbsp;​Computational Study on the Unbinding Pathways ​of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations.&​nbsp;<​em>​Phys. Chem. Chem. Phys.</​em>&​nbsp;​2016,&​nbsp;<​em>​18</​em>&​nbsp;​(7),​5622–&​nbsp;​5629,&​nbsp;<​a href="​http://​pubs.rsc.org/​en/​content/​articlelanding/​2016/​cp/​c5cp06257h#​!divAbstract"​ target="​_blank"​ rel="​noreferrer noopener">​DOI:​ 10.1039/​C5CP06257H</​a></​li><​li>​Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade.&​nbsp;​Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects , (2016) 1860:​67-78,&​nbsp;<​a href="​https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC4689311/"​ target="​_blank"​ rel="​noreferrer noopener">​DOI:​ 10.1016/​j.bbagen.2015.10.015</​a></​li><​li>​Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:​143-154,&​nbsp;<​a href="​http://​www.eurekaselect.com/​75602/​article"​ target="​_blank"​ rel="​noreferrer noopener">​DOI:​ 10.2174/​138920012798918462</​a></​li><​li>​Vashisth,​ H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008).<​a href="​http://​dx.doi.org/​10.1529/​biophysj.108.139675">​DOI:​10.1529/​biophysj.108.139675</​a></​li></​ul>​+=====Tutorials ​on the application ​of RAMD=====
  
  
 +=== Implementation in NAMD ===
 +A tutorial describing the τRAMD process of setting up and running [[https://​www.h-its.org/​downloads/​ramd/​|RAMD]] ​ simulations in NAMD for estimation of the relative residence time (τ) of a protein-small molecule complex can be found [[https://​kbbox.h-its.org/​toolbox/​tutorials/​estimation-of-relative-residence-times-of-protein-ligand-complexes-using-random-acceleration-molecular-dynamics-ramd-implementation-in-namd/​|here.]]
  
-<h2>RAMD and its applications ​(using ​the implementation in AMBER unless otherwise specified) are described in:</h2>+=== Implementation in GROMACS === 
 +A tutorial describing the τRAMD process of setting up and running RAMD simulations in GROMACS for estimation of the relative residence time (τ) of a protein-small molecule complex can be found [[https://​kbbox.h-its.org/​toolbox/​tutorials/​estimation-of-relative-residence-times-of-protein-ligand-complexes-using-random-acceleration-molecular-dynamics-ramd-implementation-in-gromacs/|here]].
  
 +                  ​
 +=== τRAMD ===
 +τ-random acceleration molecular dynamics (τRAMD) is a protocol based on the RAMD method for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanism. An introduction to the method is given [[https://​youtu.be/​kCUyQtoo4cE|here]]
  
- 
-<​ul><​li>​Lüdemann SK, Carugo O, Wade RC. Substrate access to cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. (1997) 3, 369-374.&​nbsp;<​a href="​https://​link.springer.com/​article/​10.1007%2Fs008940050053"​ target="​_blank"​ rel="​noreferrer noopener">​DOI:​10.1007/​s008940050053</​a>&​nbsp;​(Initial ARGOS implementation)</​li><​li>​Luedemann,​ S.K., Lounnas, V. and R. C. Wade. How do Substrates Enter and Products Exit the Buried Active Site of Cytochrome P450cam ? 1. Random Expulsion Molecular Dynamics Investigation of Ligand Access Channels and Mechanisms. J Mol Biol, 303:797-811 (2000).&​nbsp;<​a href="​http://​dx.doi.org/​10.1006/​jmbi.2000.4154">​doi:​10.1002/​jmbi.2000.4154</​a>&​nbsp;​(First description of method and implementation in ARGOS)</​li><​li>​Luedemann,​ S.K., Gabdoulline,​R.R.,​ Lounnas, V. and R. C. Wade. Substrate access to cytochrome P450cam investigated by molecular dynamics simulations:​ An interactive look at the underlying mechanisms. Internet Journal of Chemistry, 4, 6 (2001).&​nbsp;<​a href="​http://​www.ijc.com/​articles/​2001v4/​6/">​http://​www.ijc.com/​articles/​2001v4/​6/</​a>&​nbsp;​(using the ARGOS implementation)</​li><​li>​Winn,​P.,​ Luedemann, S.K., Gauges,R., Lounnas, V. and R. C. Wade. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a new functional role for a buried arginine PNAS, 99, 5361-5366 (2002).&​nbsp;<​a href="​http://​www.pnas.org/​cgi/​content/​full/​99/​8/​5361">​Full text</​a>&​nbsp;​(using the ARGOS implementation)</​li><​li>​Schleinkofer,​ K., Sudarko, Winn,P., Luedemann, S.K. and R. C. Wade. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling?​ EMBO Reports, 6, 584-589 (2005).<​a href="​http://​dx.doi.org/​10.1038/​sj.embor.7400420">​doi:​10.1038/​sj.embor.7400420</​a></​li><​li>​Carlsson,​ P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).<​a href="​http://​dx.doi.org/​10.1529/​biophysj.106.082917">​doi:​10.1529/​biophysj.106.082917</​a>&​nbsp;​(Implementation in CHARMM)</​li><​li>​Wang,​ T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin.&​nbsp;​J. Am. Chem. Soc. 129, 6970-6971 (2007).<​a href="​http://​dx.doi.org/​10.1021/​ja0691977">​doi:​10.1021/​ja0691977</​a></​li><​li>​Long,​ D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).<​a href="​http://​dx.doi.org/​10.1371/​journal.pone.0006081">​doi:​10.1371/​journal.pone.0006081</​a>&​nbsp;​(Implementation of a variant of RAMD in GROMACS)</​li><​li>​Perakyla,​ M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).<​a href="​http://​dx.doi.org/​10.1007/​s00249-008-0369-x">​doi:​10.1007/​s00249-008-0369-x</​a></​li><​li>​Klvana,​ M. et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations J. Mol. Biol. 392, 1339-1356 (2009).<​a href="​http://​dx.doi.org/​10.1016/​j.jmb.2009.06.076">​doi:​10.1016/​j.jmb.2009.06.076</​a></​li><​li>​Pavlova,​ M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009).<​a href="​http://​dx.doi.org/​10.1038/​nchembio.205">​doi:​10.1038/​nchembio.205</​a></​li><​li>​Wang,​ T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009).<​a href="​http://​dx.doi.org/​10.1016/​j.jmb.2009.07.093">​doi:​10.1016/​j.jmb.2009.07.093</​a></​li></​ul>​ 
- 
- 
- 
-<​h2>​Tutorial on application of RAMD</​h2>​ 
- 
- 
- 
-<p>A tutorial describing the&​nbsp;<​a href="​https://​www.h-its.org/​downloads/​ramd/"​ target="​_blank"​ rel="​noreferrer noopener">​τRAMD</​a>&​nbsp;​process of setting up and running RAMD simulations for estimation of the relative residence time (τ) of a protein-small molecule complex can be found&​nbsp;<​a href="​http://​kbbox.h-its.org/​toolbox/​tutorials/​estimation-of-relative-residence-times-of-protein-ligand-complexes-using-random-acceleration-molecular-dynamics-ramd/"​ target="​_blank"​ rel="​noreferrer noopener">​here.</​a></​p>​ 
-  </​div>​ 
-                  ​ 
-<div class="​software-preview">​ 
-  <​h3>​τRAMD</​h3>​ 
-  ​ 
-<​p>​τ-random acceleration molecular dynamics (τRAMD) is a protocol based on the RAMD method for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanism.</​p>​ 
-      <a href="​https://​www.h-its.org/​downloads/​ramd/">​Read more</​a>​ 
-  </​div>​ 
-</​html>​ 
Navigation
Print/export