Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
projects:tauramddescription [2019/06/07 09:15]
richter created
projects:tauramddescription [2020/09/28 16:47] (current)
kokhadmin [RAMD and its applications (using the implementation in Gromacs) are described in:]
Line 1: Line 1:
-RAMD and its applications (using the implementation in NAMD) are described in: +=====References===== 
-Kokh DB et. al. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput.2018DOI: 10.1021/​acs.jctc.8b00230 +====RAMD and its applications (using the implementation in Gromacs) are described in:==== 
-Niu, Y., Li, S., Pan, D., Liu, H., Yao, X. Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, 18 (7),5622– 5629, DOI: 10.1039/​C5CP06257H +  * Kokh DB et. al. A Workflow for Exploring Ligand Dissociation from a Macromolecule:​ Efficient Random Acceleration Molecular Dynamics Simulation and Interaction Fingerprints Analysis of Ligand Trajectories. J. Chem. Phys. 153, 125102 (2020); https://​doi.org/​10.1063/​5.0019088 or **arXiv** 2020 [[https://​arxiv.org/​abs/​2006.11066|arXiv:​2006.11066]]  
-Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects , (2016) 1860:67-78, DOI: 10.1016/​j.bbagen.2015.10.015 +====RAMD and its applications (using the implementation in NAMD) are described in:==== 
-Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:143-154, DOI: 10.2174/​138920012798918462 +  * Kokh DB et. al. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times. Front. Mol. Biosci. 2019 [[https://​www.frontiersin.org/​articles/​10.3389/​fmolb.2019.00036/​full|DOI:​ 10.1021/​acs.jctc.8b00230]]  
-Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008).DOI:​10.1529/​biophysj.108.139675 +  * Kokh DB et. al. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018, **14**, 7, 3859–3869 2018 [[https://​pubs.acs.org/​doi/​abs/​10.1021/​acs.jctc.8b00230|DOI: 10.1021/​acs.jctc.8b00230]]  
-RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in: +  ​* ​Niu, Y., Li, S., Pan, D., Liu, H., Yao, X. Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, **18** (7),​5622–5629, ​[[http://​pubs.rsc.org/​en/​content/​articlelanding/​2016/​cp/​c5cp06257h#​!divAbstract|DOI: 10.1039/​C5CP06257H]] 
-Lüdemann SK, Carugo O, Wade RC. Substrate access to cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. (1997) 3, 369-374. DOI:​10.1007/​s008940050053 (Initial ARGOS implementation) +  ​* ​Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects, (2016) 1860:​67-78, ​[[https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC4689311/​|DOI: 10.1016/​j.bbagen.2015.10.015]] 
-Luedemann, S.K., Lounnas, V. and R. C. Wade. How do Substrates Enter and Products Exit the Buried Active Site of Cytochrome P450cam ? 1. Random Expulsion Molecular Dynamics Investigation of Ligand Access Channels and Mechanisms. J Mol Biol, 303:797-811 (2000). doi:​10.1002/​jmbi.2000.4154 (First description of method and implementation in ARGOS) +  ​* ​Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:​143-154, ​[[http://​www.eurekaselect.com/​75602/​article|DOI: 10.2174/​138920012798918462]] 
-Luedemann, S.K., Gabdoulline,​R.R.,​ Lounnas, V. and R. C. Wade. Substrate access to cytochrome P450cam investigated by molecular dynamics simulations:​ An interactive look at the underlying mechanisms. Internet Journal of Chemistry, 4, 6 (2001). http://​www.ijc.com/​articles/​2001v4/​6/​ (using the ARGOS implementation) +  ​* ​Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008). ​[[http://​dx.doi.org/​10.1529/​biophysj.108.139675|DOI:​10.1529/​biophysj.108.139675]] 
-Winn,P., Luedemann, S.K., Gauges,R., Lounnas, V. and R. C. Wade. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a new functional role for a buried arginine PNAS, 99, 5361-5366 (2002). Full text (using the ARGOS implementation) + 
-Schleinkofer,​ K., Sudarko, Winn,P., Luedemann, S.K. and R. C. Wade. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling?​ EMBO Reports, 6, 584-589 (2005).doi:​10.1038/​sj.embor.7400420 +====RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in==== 
-Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).doi:​10.1529/​biophysj.106.082917 (Implementation in CHARMM) +  ​* ​Lüdemann SK, Carugo O, Wade RC. Substrate access to cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. (1997) 3, 369-374. ​[[https://​link.springer.com/​article/​10.1007%2Fs008940050053|DOI:​10.1007/​s008940050053]] (Initial ARGOS implementation) 
-Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsinJ. Am. Chem. Soc. 129, 6970-6971 (2007).doi:​10.1021/​ja0691977 +  ​* ​Luedemann, S.K., Lounnas, V. and R. C. Wade. How do Substrates Enter and Products Exit the Buried Active Site of Cytochrome P450cam ? 1. Random Expulsion Molecular Dynamics Investigation of Ligand Access Channels and Mechanisms. J Mol Biol, 303:797-811 (2000). ​[[http://​dx.doi.org/​10.1006/​jmbi.2000.4154|doi:​10.1002/​jmbi.2000.4154]] (First description of method and implementation in ARGOS) 
-Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).doi:​10.1371/​journal.pone.0006081 (Implementation of a variant of RAMD in GROMACS) +  ​* ​Luedemann, S.K., Gabdoulline,​R.R.,​ Lounnas, V. and R. C. Wade. Substrate access to cytochrome P450cam investigated by molecular dynamics simulations:​ An interactive look at the underlying mechanisms. Internet Journal of Chemistry, 4, 6 (2001). ​[[ 
-Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).doi:​10.1007/​s00249-008-0369-x +http://​www.ijc.com/​articles/​2001v4/​6/​|http://​www.ijc.com/​articles/​2001v4/​6/​]] ​(using the ARGOS implementation) 
-Klvana, M. et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations J. Mol. Biol. 392, 1339-1356 (2009).doi:​10.1016/​j.jmb.2009.06.076 +  ​* ​Winn,P., Luedemann, S.K., Gauges,R., Lounnas, V. and R. C. Wade. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a new functional role for a buried arginine PNAS, 99, 5361-5366 (2002). ​[[http://​www.pnas.org/​cgi/​content/​full/​99/​8/​5361|Full text]] (using the ARGOS implementation) 
-Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009).doi:​10.1038/​nchembio.205 +  ​* ​Schleinkofer,​ K., Sudarko, Winn,P., Luedemann, S.K. and R. C. Wade. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling?​ EMBO Reports, 6, 584-589 (2005). ​[[http://​dx.doi.org/​10.1038/​sj.embor.7400420|doi:​10.1038/​sj.embor.7400420]] 
-Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009).doi:​10.1016/​j.jmb.2009.07.093 +  ​* ​Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).[[http://​dx.doi.org/​10.1529/​biophysj.106.082917|doi:​10.1529/​biophysj.106.082917]] (Implementation in CHARMM) 
-Tutorial ​on application of RAMD +  ​* ​Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin J. Am. Chem. Soc. 129, 6970-6971 (2007).[[http://​dx.doi.org/​10.1021/​ja0691977|doi:​10.1021/​ja0691977]] 
-A tutorial describing the τRAMD process of setting up and running RAMD simulations for estimation of the relative residence time (τ) of a protein-small molecule complex can be found here.+  ​* ​Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).[[http://​dx.doi.org/​10.1371/​journal.pone.0006081|doi:​10.1371/​journal.pone.0006081]] (Implementation of a variant of RAMD in GROMACS) 
 +  ​* ​Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).[[http://​dx.doi.org/​10.1007/​s00249-008-0369-x|doi:​10.1007/​s00249-008-0369-x]] 
 +  ​* ​Klvana, M. et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations J. Mol. Biol. 392, 1339-1356 (2009). ​[[http://​dx.doi.org/​10.1016/​j.jmb.2009.06.076|doi:​10.1016/​j.jmb.2009.06.076]] 
 +  ​* ​Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009). ​[[http://​dx.doi.org/​10.1038/​nchembio.205|doi:​10.1038/​nchembio.205]] 
 +  ​* ​Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009). ​[[http://​dx.doi.org/​10.1016/​j.jmb.2009.07.093|doi:​10.1016/​j.jmb.2009.07.093]] 
 + 
 + 
 +=====Tutorials ​on the application of RAMD===== 
 + 
 + 
 +=== Implementation in NAMD === 
 +A tutorial describing the τRAMD process of setting up and running ​[[https://​www.h-its.org/​downloads/​ramd/​|RAMD]]  ​simulations ​in NAMD for estimation of the relative residence time (τ) of a protein-small molecule complex can be found [[https://​kbbox.h-its.org/​toolbox/​tutorials/​estimation-of-relative-residence-times-of-protein-ligand-complexes-using-random-acceleration-molecular-dynamics-ramd-implementation-in-namd/​|here.]] 
 + 
 +=== Implementation in GROMACS === 
 +A tutorial describing the τRAMD process of setting up and running RAMD simulations in GROMACS for estimation of the relative residence time (τ) of a protein-small molecule complex can be found [[https://​kbbox.h-its.org/​toolbox/​tutorials/​estimation-of-relative-residence-times-of-protein-ligand-complexes-using-random-acceleration-molecular-dynamics-ramd-implementation-in-gromacs/​|here]]. 
 + 
 +                   
 +=== τRAMD === 
 +τ-random acceleration molecular dynamics (τRAMD) is a protocol based on the RAMD method for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanism. An introduction to the method is given [[https://​youtu.be/​kCUyQtoo4cE|here]] 
Navigation
Print/export