Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
projects:tauramddescription [2020/07/21 14:53] – [Tutorial on application of RAMD] wade | projects:tauramddescription [2024/07/17 16:13] (current) – [RAMD and its applications (using the implementation in Gromacs) are described in:] wade | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | =====References===== | + | =====Key Information and References |
+ | |||
+ | For a short description of Random Acceleration Molecular Dynamics (RAMD) and the key references for the method, see the [[https:// | ||
+ | |||
+ | |||
+ | For a short description of how to use RAMD to calculate relative residence times with the tauRAMD protocol, as well as the key references for the method, see the [[https:// | ||
+ | |||
+ | For tutorials describing the τRAMD process of setting up and running [[https:// | ||
+ | |||
+ | For implementations of RAMD, versions are available for [[https:// | ||
+ | |||
+ | In addition, scripts for [[https:// | ||
====RAMD and its applications (using the implementation in Gromacs) are described in:==== | ====RAMD and its applications (using the implementation in Gromacs) are described in:==== | ||
- | * Kokh DB et. al. A Workflow for Exploring Ligand Dissociation from a Macromolecule: | + | |
+ | * de Oliveira, M.V.D., da Costa, K.S., Silva, J.R.A., Lameira, J. and Lima, A.H., Role of UDP‐N‐acetylmuramic acid in the regulation of MurA activity revealed by molecular dynamics simulations. Protein Science, 33(4), p.e4969. (2024). [[https:// | ||
+ | * Maciel, L.G., Ferraz, M.V., Oliveira, A.A., Lins, R.D., Dos Anjos, J.V., Guido, R.V. and Soares, T.A., Inhibition of 3-Hydroxykynurenine Transaminase from Aedes aegypti and Anopheles gambiae: A mosquito-specific target to combat the transmission of arboviruses. ACS bio & med Chem Au, 3(2), pp.211-222. (2023). [[https:// | ||
+ | * Flores-León, | ||
+ | * Maximova, E., Postnikov, E.B., Lavrova, A.I., Farafonov, V. and Nerukh, D., Protein–ligand dissociation rate constant from all-atom simulation. The Journal of Physical Chemistry Letters, 12(43), pp.10631-10636. (2021). [[https:// | ||
+ | * Kokh, D.B. and Wade, R.C., G protein-coupled receptor–ligand dissociation rates and mechanisms from τRAMD simulations. Journal of Chemical Theory and Computation, | ||
+ | | ||
====RAMD and its applications (using the implementation in NAMD) are described in:==== | ====RAMD and its applications (using the implementation in NAMD) are described in:==== | ||
- | * Kokh DB et. al. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times. Front. Mol. Biosci. 2019 [[https:// | + | |
- | * Kokh DB et. al. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018, **14**, 7, 3859–3869 2018 [[https:// | + | * Tang, R., Wang, Z., Xiang, S., Wang, L., Yu, Y., Wang, Q., Deng, Q., Hou, T. and Sun, H., Uncovering the Kinetic Characteristics and Degradation Preference of PROTAC Systems with Advanced Theoretical Analyses. JACS Au, 3(6), pp.1775-1789. (2023). [[https:// |
+ | * Zhang, Q., Han, J., Zhu, Y., Tan, S. and Liu, H., Binding thermodynamics and dissociation kinetics analysis uncover the key structural motifs of phenoxyphenol derivatives as the direct InhA inhibitors and the hotspot residues of InhA. International Journal of Molecular Sciences, 23(17), p.10102. (2022). [[https:// | ||
+ | * Berger, B. T., Amaral, M., Kokh, D. B., Nunes-Alves, | ||
+ | * Nunes-Alves, | ||
+ | * Zhang, Z., Fan, F., Luo, W., Zhao, Y. and Wang, C., Molecular dynamics revealing a detour-forward release mechanism of tacrine: implication for the specific binding characteristics in butyrylcholinesterase. Frontiers in Chemistry, 8, p.730. (2020). [[https:// | ||
+ | * Chaudhary, S.K., Iyyappan, Y., Elayappan, M., Jeyakanthan, | ||
+ | * Bruno, A., Barresi, E., Simola,N., Da Pozzo, E., Costa, B., Novellino, E., Da Settimo, F., Martini, C., Taliani, S. and Cosconati, S. Unbinding of Translocator Protein 18 kDa (TSPO) Ligands: From in Vitro Residence Time to in Vivo Efficacy via in Silico Simulations. | ||
+ | | ||
+ | * Muvva, C., Murugan, N.A., Kumar Choutipalli, | ||
+ | * Kokh DB et. al. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018, **14**, 7, 3859–3869 2018 [[https:// | ||
+ | * Wells, G., Yuan, H., McDaniel, M.J., Kusumoto, H., Snyder, J.P., Liotta, D.C. and Traynelis, S.F., The GluN2B‐Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand‐unbinding and domain opening. Proteins: Structure, Function, and Bioinformatics, | ||
+ | * Du, J., Liu, L., Guo, L.Z., Yao, X.J. and Yang, J.M., Molecular basis of P450 OleT JE: an investigation of substrate binding mechanism and major pathways. Journal of Computer-Aided Molecular Design, 31, pp.483-495. (2017). [[https:// | ||
+ | * Zhao, Y., She, N., Zhang, X., Wang, C. and Mo, Y., Product release mechanism and the complete enzyme catalysis cycle in yeast cytosine deaminase (yCD): A computational study. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1865(8), pp.1020-1029. (2017). [[https:// | ||
+ | * Pietra, F., On Dioxygen and Substrate Access to Soluble Methane Monooxygenases: | ||
* Niu, Y., Li, S., Pan, D., Liu, H., Yao, X. Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, **18** (7), | * Niu, Y., Li, S., Pan, D., Liu, H., Yao, X. Computational Study on the Unbinding Pathways of B-RAF Inhibitors and Its Implication for the Difference of Residence Time: Insight from Random Acceleration and Steered Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, **18** (7), | ||
* Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects, (2016) 1860:67-78, [[https:// | * Xiaofeng Yu, Prajwal Nandekar, Ghulam Mustafa, Vlad Cojocaru, Galina I. Lepesheva and Rebecca C. Wade. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta (BBA) – General Subjects, (2016) 1860:67-78, [[https:// | ||
+ | * Liu, Y., Tu, G., Lai, X., Kuang, B. and Li, S., Exploring ligand dissociation pathways from aminopeptidase N using random acceleration molecular dynamics simulation. Journal of molecular modeling, 22, pp.1-7. (2016). [[https:// | ||
+ | * Lopata, A., Leveles, I., Bendes, Á.Á., Viskolcz, B., Vértessy, B.G., Jójárt, B. and Tóth, J., A hidden active site in the potential drug target mycobacterium tuberculosis dUTPase is accessible through small amplitude protein conformational changes. Journal of Biological Chemistry, 291(51), pp.26320-26331. (2016). [[https:// | ||
+ | * Chen, N., Zhao, Y., Lu, J., Wu, R. and Cao, Z., Mechanistic insights into the rate-limiting step in purine-specific nucleoside hydrolase. Journal of Chemical Theory and Computation, | ||
+ | * Cai, J., Li, J., Zhang, J., Ding, S., Liu, G., Li, W. and Tang, Y., Computational insights into inhibitory mechanism of azole compounds against human aromatase. RSC advances, 5(110), pp.90871-90880. (2015). [[https:// | ||
+ | * Shang, Y., LeRouzic, V., Schneider, S., Bisignano, P., Pasternak, G.W. and Filizola, M., Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions. Biochemistry, | ||
+ | * Pietra, F., Binding Pockets and Permeation Channels for Dioxygen through Cofactorless 3‐Hydroxy‐2‐methylquinolin‐4‐one 2, 4‐Dioxygenase in Association with Its Natural Substrate, 3‐Hydroxy‐2‐methylquinolin‐4 (1H)‐one. A Perspective from Molecular Dynamics Simulations. Chemistry & Biodiversity, | ||
+ | * Zhuang, S., Bao, L., Linhananta, A. and Liu, W., Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. Journal of Molecular Graphics and Modelling, 44, pp.155-160. (2013). [[https:// | ||
+ | * Pietra, F., On the pathways of biologically relevant diatomic gases through proteins. Dioxygen and heme oxygenase from the perspective of molecular dynamics. Chemistry & Biodiversity, | ||
+ | * Mirza, I.A., Burk, D.L., Xiong, B., Iwaki, H., Hasegawa, Y., Grosse, S., Lau, P.C. and Berghuis, A.M., Structural analysis of a novel cyclohexylamine oxidase from Brevibacterium oxydans IH-35A. PloS one, 8(3), p.e60072. (2013). [[https:// | ||
* Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:143-154, [[http:// | * Vlad Cojocaru, Peter J. Winn and Rebecca C. Wade, Multiple, Ligand-dependent Routes from the Active Site of Cytochrome P450 2C9. Curr. Drug. Metab. (2012) 13:143-154, [[http:// | ||
+ | * Merchant, B. A., and Madura, J. D. Insights from molecular dynamics: the binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters. Journal of Molecular Graphics and Modelling, 38, 1-12. (2012). [[https:// | ||
+ | * Kalyaanamoorthy, | ||
+ | * Yu, R., Kaas, Q. and Craik, D.J., Delineation of the unbinding pathway of α-conotoxin ImI from the α7 nicotinic acetylcholine receptor. The Journal of Physical Chemistry B, 116(21), pp.6097-6105. (2012). [[https:// | ||
+ | * Pietra, F. Molecular‐Dynamics Simulation of Dioxygen Egress from 12/ | ||
* Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008). [[http:// | * Vashisth, H., Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys. J. 95, 4193-4204 (2008). [[http:// | ||
+ | |||
+ | | ||
====RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in==== | ====RAMD and its applications (using the implementation in AMBER unless otherwise specified) are described in==== | ||
Line 19: | Line 64: | ||
* Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).[[http:// | * Carlsson, P., Burendahl, S., Nilsson, L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys. J. 91, 3151-3161 (2006).[[http:// | ||
* Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin J. Am. Chem. Soc. 129, 6970-6971 (2007).[[http:// | * Wang, T., Duan, Y. Chromophore channeling in the G-protein coupled receptor rhodopsin J. Am. Chem. Soc. 129, 6970-6971 (2007).[[http:// | ||
+ | * * Bertoša, B., Kojić-Prodić, | ||
* Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).[[http:// | * Long, D., Mu, Y. Yang, D. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein. PLoS ONE 4, e6801 (2008).[[http:// | ||
* Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).[[http:// | * Perakyla, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. 38, 185-198 (2009).[[http:// | ||
Line 24: | Line 70: | ||
* Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009). [[http:// | * Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate Nature Chem. Biol. 5, 727-733 (2009). [[http:// | ||
* Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009). [[http:// | * Wang, T., Duan, Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102-1115 (2009). [[http:// | ||
+ | * Li, W., Shen, J., Liu, G., Tang, Y., and Hoshino, T. Exploring coumarin egress channels in human cytochrome P450 2A6 by random acceleration and steered molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics, | ||
+ | * Shen, Z., Cheng, F., Xu, Y., Fu, J., Xiao, W., Shen, J., Liu, G., Li, W. and Tang, Y. Investigation of indazole unbinding pathways in CYP2E1 by molecular dynamics simulations. PloS one, 7(3), e33500. (2012). https:// | ||
+ | * Li, W., Fu, J., Cheng, F., Zheng, M., Zhang, J., Liu, G., and Tang, Y. Unbinding pathways of GW4064 from human farnesoid X receptor as revealed by molecular dynamics simulations. Journal of chemical information and modeling, 52(11), 3043-3052. (2012). [[https:// | ||
+ | * Yu, X., Cojocaru, V. and Wade, R.C.,. Conformational diversity and ligand tunnels of mammalian cytochrome P 450s. Biotechnology and applied biochemistry, | ||
+ | * Cai, J., Li, J., Zhang, J., Ding, S., Liu, G., Li, W. and Tang, Y., Computational insights into inhibitory mechanism of azole compounds against human aromatase. RSC advances, 5(110), pp.90871-90880. (2015). [[https:// | ||
- | =====Tutorials on the application of RAMD===== | ||
- | |||
- | |||
- | === Implementation in NAMD === | ||
- | A tutorial describing the τRAMD process of setting up and running [[https:// | ||
- | |||
- | === Implementation in GROMACS === | ||
- | A tutorial describing the τRAMD process of setting up and running RAMD simulations in GROMACS for estimation of the relative residence time (τ) of a protein-small molecule complex can be found [[https:// | ||
- | |||
- | | ||
- | === τRAMD === | ||
- | τ-random acceleration molecular dynamics (τRAMD) is a protocol based on the RAMD method for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanism. An introduction to the method is given [[https:// | ||