Data Types | |
interface | meanvar |
Functions/Subroutines | |
real *8 function | fmax3 (x1, x2, x3) |
subroutine | cross (ab, a, b) |
subroutine | cross4 (ab, a, b) |
subroutine | matrix_old (om, rot) |
subroutine | matrix_new (om, rot) |
subroutine | matrix (om, rot, old) |
subroutine | tr (vo, vn, ex, ey, ez) |
subroutine | tr4 (vo, vn, ex, ey, ez) |
subroutine | tr_vector (vo, vn, ex, ey, ez, nat) |
subroutine | dot (ab, a, b) |
subroutine | rotate31 (c, rot, b) |
subroutine | rotate3n (c, rot, b, n) |
subroutine | rotate33 (c, rot, b) |
real(kind=8) function | determinant (mat) |
subroutine | ggnml (n, gaus) |
subroutine | ggnml4_new (n, gaus) |
subroutine | ggubs (unif) |
subroutine | meanvar (input, mean, var) |
subroutine | least_square (n, X, Y, a, b, d, r2) |
Linear least square. The input data set is X(m), Y(m). The number of data points is n (n must be > 2). The returned parameters are: a,b, coefficients of equation Y = a + b X, and d, standard deviation of fit. original function label array from 0 to n-1 !! More... | |
subroutine | least_square2 (n, X, Y, a, b, d, r2) |
same function, but label array from 1 to N More... | |
subroutine | derivative (input, output, dt, opt_factor) |
subroutine | simple_derivative (input, output, dt, opt_factor) |
kind of derivative, simplified version, gives a smoother approximation More... | |
subroutine | norm (wa) |
Copyright (c) 2009, 2010, 2015, 2016, 2019 Heidelberg Institute of Theoretical Studies (HITS, www.h-its.org) Schloss-Wolfsbrunnenweg 35 69118 Heidelberg, Germany
Please send your contact address to get information on updates and new features to "mcmsoft@h-its.org". Questions will be answered as soon as possible.
References: see also http://mcm.h-its.org/sda7/do:c/doc_sda7/references.html:
Brownian dynamics simulation of protein-protein diffusional encounter. (1998) Methods, 14, 329-341.
SDA 7: A modular and parallel implementation of the simulation of diffusional association software. Journal of computational chemistry 36.21 (2015): 1631-1645.
Authors: M.Martinez, N.J.Bruce, J.Romanowska, D.B.Kokh, P.Mereghetti, X. Yu, M. Ozboyaci, M. Reinhardt, P. Friedrich, R.R.Gabdoulline, S.Richter and R.C.Wade
Copyright (c) 2009, 2010, 2015, 2016, 2019 Heidelberg Institute of Theoretical Studies (HITS, www.h-its.org) Schloss-Wolfsbrunnenweg 35 69118 Heidelberg, Germany
Please send your contact address to get information on updates and new features to "mcmsoft@h-its.org". Questions will be answered as soon as possible.
References: see also http://mcm.h-its.org/sda7/do:c/doc_sda7/references.html:
Brownian dynamics simulation of protein-protein diffusional encounter. (1998) Methods, 14, 329-341.
SDA 7: A modular and parallel implementation of the simulation of diffusional association software. Journal of computational chemistry 36.21 (2015): 1631-1645.
Authors: M.Martinez, N.J.Bruce, J.Romanowska, D.B.Kokh, P.Mereghetti, X. Yu, M. Ozboyaci, M. Reinhardt, P. Friedrich, R.R.Gabdoulline, S.Richter and R.C.Wade
group general mathematical functions
subroutine cross | ( | real ( kind=8 ), dimension ( 3 ), intent(out) | ab, |
real ( kind=8 ), dimension ( 3 ), intent(in) | a, | ||
real ( kind=8 ), dimension ( 3 ), intent(in) | b | ||
) |
subroutine cross4 | ( | real ( kind=4 ), dimension ( 3 ), intent(out) | ab, |
real ( kind=4 ), dimension ( 3 ), intent(in) | a, | ||
real ( kind=4 ), dimension ( 3 ), intent(in) | b | ||
) |
subroutine meanvar::derivative | ( | real ( kind=8 ) | input, |
real ( kind=8 ) | output, | ||
real ( kind=8 ) | dt, | ||
real ( kind=8 ) | opt_factor | ||
) |
real ( kind=8 ) function determinant | ( | real ( kind=8 ), dimension(3,3), intent(in) | mat | ) |
subroutine dot | ( | real(kind=8), intent(out) | ab, |
real(kind=8), dimension(3), intent(in) | a, | ||
real(kind=8), dimension(3), intent(in) | b | ||
) |
real*8 function fmax3 | ( | x1, | |
x2, | |||
x3 | |||
) |
subroutine ggnml | ( | n, | |
dimension(3) | gaus | ||
) |
subroutine ggnml4_new | ( | integer | n, |
real ( kind=4 ), dimension ( n ) | gaus | ||
) |
subroutine ggubs | ( | unif | ) |
subroutine meanvar::least_square | ( | n, | |
X, | |||
Y, | |||
a, | |||
b, | |||
d, | |||
r2 | |||
) |
Linear least square.
The input data set is X(m), Y(m).
The number of data points is n (n must be > 2).
The returned parameters are:
a,b, coefficients of equation
Y = a + b X, and d, standard deviation of fit.
original function label array from 0 to n-1 !!
subroutine meanvar::least_square2 | ( | n, | |
X, | |||
Y, | |||
a, | |||
b, | |||
d, | |||
r2 | |||
) |
same function, but label array from 1 to N
subroutine matrix | ( | real ( kind=8 ), dimension ( 3 ), intent(in) | om, |
real ( kind=8 ), dimension ( 3,3 ), intent(out) | rot, | ||
logical, intent(in) | old | ||
) |
subroutine matrix_new | ( | real ( kind=8 ), dimension ( 3 ), intent(in) | om, |
real ( kind=8 ), dimension ( 3,3 ), intent(out) | rot | ||
) |
subroutine matrix_old | ( | real ( kind=8 ), dimension ( 3 ), intent(in) | om, |
real ( kind=8 ), dimension ( 3,3 ), intent(out) | rot | ||
) |
subroutine meanvar | ( | real(kind=8) | input, |
real(kind=8) | mean, | ||
real(kind=8) | var | ||
) |
subroutine simple_derivative::norm | ( | real ( kind = 8 ) | wa | ) |
subroutine rotate31 | ( | real (kind=8 ), dimension(3), intent(out) | c, |
real( kind=8 ), dimension(3,3), intent(in) | rot, | ||
real (kind=8 ), dimension(3), intent(in) | b | ||
) |
subroutine rotate33 | ( | real (kind=8 ), dimension(3,3), intent(out) | c, |
real( kind=8 ), dimension(3,3), intent(in) | rot, | ||
real (kind=8 ), dimension(3,3), intent(in) | b | ||
) |
subroutine rotate3n | ( | real (kind=8 ), dimension(3,n), intent(out) | c, |
real( kind=8 ), dimension(3,3), intent(in) | rot, | ||
real (kind=8 ), dimension(3,n), intent(in) | b, | ||
integer | n | ||
) |
subroutine derivative::simple_derivative | ( | real ( kind=8 ) | input, |
real ( kind=8 ) | output, | ||
real ( kind=8 ) | dt, | ||
real ( kind=8 ) | opt_factor | ||
) |
kind of derivative, simplified version, gives a smoother approximation
subroutine tr | ( | real( kind=8 ), dimension( 3 ), intent(in) | vo, |
real ( kind=8 ), dimension ( 3 ), intent(out) | vn, | ||
real( kind=8 ), dimension( 3 ), intent(in) | ex, | ||
real( kind=8 ), dimension( 3 ), intent(in) | ey, | ||
real( kind=8 ), dimension( 3 ), intent(in) | ez | ||
) |
subroutine tr4 | ( | real ( kind = 4 ), dimension ( 3 ) | vo, |
real ( kind = 4 ), dimension ( 3 ) | vn, | ||
real ( kind = 8 ), dimension ( 3 ) | ex, | ||
real ( kind = 8 ), dimension ( 3 ) | ey, | ||
real ( kind = 8 ), dimension ( 3 ) | ez | ||
) |
subroutine tr_vector | ( | real ( kind = 8 ), dimension ( 3,nat ), intent(in) | vo, |
real ( kind = 8 ), dimension ( 3,nat ), intent(out) | vn, | ||
real ( kind = 8 ), dimension ( 3 ), intent(in) | ex, | ||
real ( kind = 8 ), dimension ( 3 ), intent(in) | ey, | ||
real ( kind = 8 ), dimension ( 3 ), intent(in) | ez, | ||
integer, intent(in) | nat | ||
) |