SDA (SDA flex)  7.2
Simulation of Diffusional Association
Functions/Subroutines
rot_diffusion.f90 File Reference

Functions/Subroutines

program rot_diffusion
 Program rot_diffusion. More...
 
subroutine all_acf_rotation (orient_axis, tab_prot, ACF, nchunks, b_type, value_type)
 Compute all autocorrelation function of rotation. More...
 
subroutine all_msd_rotation (orient_axis, tab_prot, ACF, nchunks, b_type, value_type, nb_region, dt, io_msd)
 This method uses rotational mean square displacement ( rmsd ) computed with a trick from above reference. More...
 
subroutine autocorrelation_orient (input_data, output_data, size_input)
 Make autocorrelation of the orientation, simplest form. More...
 
subroutine rmsd_orient (input_data, output_data, dt)
 Different implementation, as an usual msd ( 2 loops over t ) dt only needed in check, could be deleted. More...
 
subroutine print_acfrot_sdamm (ACF, time_snapshot, b_type, value_type, io_acf)
 Version with output similar to sdamm, need to produce more files. More...
 

Detailed Description

Version
{version 7.2.3 (2019)}

Copyright (c) 2009, 2010, 2015, 2016, 2019 Heidelberg Institute of Theoretical Studies (HITS, www.h-its.org) Schloss-Wolfsbrunnenweg 35 69118 Heidelberg, Germany

Please send your contact address to get information on updates and new features to "mcmsoft@h-its.org". Questions will be answered as soon as possible.

References: see also http://mcm.h-its.org/sda7/do:c/doc_sda7/references.html:

Brownian dynamics simulation of protein-protein diffusional encounter. (1998) Methods, 14, 329-341.

SDA 7: A modular and parallel implementation of the simulation of diffusional association software. Journal of computational chemistry 36.21 (2015): 1631-1645.

Authors: M.Martinez, N.J.Bruce, J.Romanowska, D.B.Kokh, P.Mereghetti, X. Yu, M. Ozboyaci, M. Reinhardt, P. Friedrich, R.R.Gabdoulline, S.Richter and R.C.Wade


Compute the autocorrelation function of the rotation and the rotational diffusion coefficients

Function/Subroutine Documentation

◆ all_acf_rotation()

subroutine all_acf_rotation ( real ( kind=8 ), dimension (:,:,:,:)  orient_axis,
type ( array_protein_type tab_prot,
real ( kind=8 ), dimension (:,:,:), allocatable  ACF,
integer  nchunks,
logical  b_type,
integer  value_type 
)

Compute all autocorrelation function of rotation.

Can deal with splitting the trajectory with nchunks

Parameters
orient_axis: array containing the orientation of the solute during the trajectory
tab_prot: instance of array_protein_type
ACF: return, autocorrelation functions
nchunks: how many parts the simulation is splitted
b_type: logical, compute for different type of proteins if .true.
value_type: if 0 compute for all proteins AND for all types of proteins, if > 0 compute only for this type could improve, read in orient_axis only for this type and forget about this argument
Here is the call graph for this function:
Here is the caller graph for this function:

◆ all_msd_rotation()

subroutine all_msd_rotation ( real ( kind=8 ), dimension (:,:,:,:), intent(in)  orient_axis,
type ( array_protein_type ), intent(in)  tab_prot,
real ( kind=8 ), dimension (:,:,:), allocatable  ACF,
integer, intent(in)  nchunks,
logical, intent(in)  b_type,
integer, intent(in)  value_type,
integer, intent(in)  nb_region,
real ( kind=4 ), intent(in)  dt,
integer, intent(in)  io_msd 
)

This method uses rotational mean square displacement ( rmsd ) computed with a trick from above reference.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ autocorrelation_orient()

subroutine autocorrelation_orient ( real ( kind=8 ), dimension (:,:,:,:), intent(in)  input_data,
real ( kind=8 ), dimension (:), intent(out)  output_data,
integer, intent(in)  size_input 
)

Make autocorrelation of the orientation, simplest form.

Version using the maximum number of data points
Large tau have a poor statistic
Here can use OpenMP

Parameters
input_data: trajectory of the orientation
output_data: return, 1 dimensional autocorrelation function
size_input: size of input
Here is the caller graph for this function:

◆ print_acfrot_sdamm()

subroutine print_acfrot_sdamm ( real ( kind=8 ), dimension (:,:,:)  ACF,
real (kind=4)  time_snapshot,
logical  b_type,
integer  value_type,
integer  io_acf 
)

Version with output similar to sdamm, need to produce more files.

For use with octave script

Here is the caller graph for this function:

◆ rmsd_orient()

subroutine rmsd_orient ( real ( kind=8 ), dimension (:,:,:,:), intent(in)  input_data,
real ( kind=8 ), dimension (:), intent(out)  output_data,
real ( kind=4 ), intent(in)  dt 
)

Different implementation, as an usual msd ( 2 loops over t ) dt only needed in check, could be deleted.

Here is the call graph for this function:
Here is the caller graph for this function:
Imprint/Privacy